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Abstract

This paper provides theoretical insights into high-dimensional binary classification
with class-conditional noisy labels. Specifically, we study the behavior of a linear
classifier with a label noisiness aware loss function, when both the dimension of
data p and the sample size n are large and comparable. Relying on random matrix
theory by supposing a Gaussian mixture data model, the performance of the linear
classifier when p, n → ∞ is shown to converge towards a limit, involving scalar
statistics of the data. Importantly, our findings show that the low-dimensional
intuitions to handle label noise do not hold in high-dimension, in the sense that the
optimal classifier in low-dimension dramatically fails in high-dimension. Based on
our derivations, we design an optimized method that is shown to be provably more
efficient in handling noisy labels in high dimensions. Our theoretical conclusions
are further confirmed by experiments on real datasets, where we show that our
optimized approach outperforms the considered baselines.

1 Intorduction

Machine learning methods are usually built upon low-dimensional intuitions which do not necessarily
hold when processing high-dimensional data. Numerous studies have demonstrated the effects of
the curse of dimensionality, by showing that high dimensions can alter the internal functioning of
various ML methods designed with low-dimensional intuitions. Classical examples include spectral
methods (Couillet & Benaych-Georges, 2016), empirical risk minimization frameworks (El Karoui
et al., 2013; Mai & Liao, 2019), transfer & multi-task learning (Tiomoko et al., 2021), deep learning
theory with the double descent phenomena (Nakkiran et al., 2021; Mei & Montanari, 2022) and many
other works. In all this literature, random matrix theory (RMT) played a central role in deciphering
the high-dimensional effects by supposing the so-called RMT regime where both the dimension of
data and the sample size are supposed to be large and comparable. We refer the reader to (Bai &
Silverstein, 2010) for a general overview on the spectral analysis of large random matrices, and to
(Couillet & Liao, 2022) for specific applications of RMT in the realm of machine learning.

In this paper, we aim at exploring the high-dimensional effects on learning with noisy labels. Based
on the framework of Natarajan et al. (2018), who derived an unbiased classifier when faced with a
binary classification problem with class-conditional noisy labels, we introduce a Labels-Perturbed
Classifier (LPC) that is essentially a Ridge classifier with parameterized labels. The introduced
classifier encapsulates different variants depending on the choice of the label parameters including
the unbiased method of Natarajan et al. (2018). Considering a Gaussian mixture data model and
supposing a high-dimensional regime, we conduct an RMT analysis of LPC by characterizing the
distribution of its decision function and deriving its theoretical test performance in terms of both
accuracy and risk. Our analysis allows us to gain insight when learning with noisy labels, and more
importantly design an optimized classifier that surprisingly outperforms the unbiased classifier of
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Natarajan et al. (2018) in high dimensions, even approaching the performance of an oracle classifier
that is trained with the correct labels. Through this analysis, we demonstrate again that methods
designed with low-dimensional intuitions can dramatically fail in high-dimensions, and careful
refinements are needed to design more robust and interpretable methods. Our theoretical findings are
also validated on real data where we show consistent improvements under high label noise.

The remainder of the paper is organized as follows. Section 2 presents related work in the realm of
learning with noisy labels. Our setting and main assumptions along with essential RMT notions are
presented in Section 3. The main results brought by this paper are deferred to Section 4. In Section 5
we conduct experiments to validate our findings on real data. Finally, Section 6 concludes the paper
and discusses future extensions. All our proofs are deferred to the Appendix.

2 Related work

Numerous studies have been conducted to investigate supervised learning under noisy labels, spanning
both theoretical and empirical approaches. These studies range from learning theory and statistical
perspectives to practical implementations using neural networks and deep learning techniques.

Key contributions in this field include: Bayesian Approaches: Graepel & Herbrich (2000) conducted
a Bayesian study on learning with noisy labels. Lawrence & Schölkopf (2001) estimated noise levels
in kernel-based learning a work that was later extended by Li et al. (2007), who incorporated a
probabilistic noise model into the Kernel Fisher discriminant and relaxed distribution assumptions.
Robust Optimization Approaches: Freund (2009) proposed a robust boosting algorithm using a non-
convex potential, which demonstrated empirical resilience against random label noise. Jiang (2001)
provided a survey of theoretical results on boosting with noisy labels. Model-Specific Robustness:
Biggio et al. (2011) explored the robustness of SVMs under adversarial label noise and proposed
a kernel matrix correction method to enhance robustness. Algorithmic Innovations: Several noise-
tolerant versions of the perceptron algorithm have been developed, including Passive-aggressive
algorithms (Crammer et al., 2006), Confidence-weighted learning (Dredze et al., 2008), AROW
(Crammer et al., 2009), and NHERD algorithm (Crammer & Lee, 2010). Deep Learning Approaches:
Recent works have utilized deep learning techniques to address noisy labels. For example, Li et al.
(2020) introduced Dividemix, a semi-supervised learning algorithm for learning with noisy labels.
Ma et al. (2018) studied the generalization behavior of deep neural networks (DNNs) for noisy labels
in terms of intrinsic dimensionality, proposing a Dimensionality-Driven Learning (D2L) strategy
to avoid overfitting. Tanaka et al. (2018) addressed noisy labels in computer vision contexts, while
Karimi et al. (2020) applied these techniques to medical imaging.

Our work is closely related to the studies in (Natarajan et al., 2013, 2018), which consider adaptive
loss functions and assume the prior knowledge of the noise rates. Scott et al. (2013) do not make
this assumption and model the true distribution as satisfying a mutual irreducibility property, then
estimating mixture proportions by maximal denoising of noisy distributions. Manwani & Sastry
(2013) investigated the impact of the loss function on noise tolerance, showing that empirical risk
minimization under the 0-1 loss has robust properties, while the squared loss is noise-tolerant only
under uniform noise. For a comprehensive overview of the field, readers can refer to the survey by
Song et al. (2022) on learning with noisy labels.

3 Problem setting and Background

3.1 Binary classification with noisy labels

We consider that we are given a sequence of n i.i.d p-dimensional training data x1, ...,xn ∈ Rp with
corresponding correct labels y1, ..., yn = ±1. We consider a noisy label setting where the true labels
yi’s are flipped randomly, yielding a noisy dataset (xi, ỹi)i∈[n] such that

P(ỹi = −1 | yi = +1) = ε+, P(ỹi = +1 | yi = −1) = ε−, with ε+ + ε− < 1.

We suppose that xi is sampled from a Gaussian mixture of two clusters C1 and C2, i.e., for a ∈ [2]:

xi ∈ Ca ⇔
{
xi = µa + zi, zi ∼ N (0, Ip),

yi = (−1)a.
(1)
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For convenience and without loss of generality, we further assume that µa = (−1)aµ for some
vector µ ∈ Rp. This setting can be recovered by subtracting µ1+µ2

2 from each data point, as such
µ = µ2−µ1

2 and therefore the SNR ∥µ∥ controls the difficulty of the classification problem, in the
sense that large values of ∥µ∥ yield a simple classification problem whereas when ∥µ∥ → 0, the
classification becomes impossible.
Remark 3.1 (On the data model). Note that the above data assumption can be relaxed to considering
xi = µa +C

1
2
a zi where Ca is some semi-definite covariance matrix and zi are random vectors with

i.i.d entries of mean 0, variance 1 and bounded fourth order moment. In fact, in the high-dimensional
regime when n, p → ∞, the asymptotic performance of the classifier considered subsequently is
universal in the sense that it depends only on the statistical means and covariances of the data (Louart
& Couillet, 2018; Seddik et al., 2020; Dandi et al., 2024). However, such a general setting comes at
the expense of more complex formulas, making the above isotropic assumption more convenient for
readability and better interpretation of our findings. We provide a more general result of our main
result (Theorem 4.2) by considering arbitrary covariance matrices in the Appendix (Theorem B.2).

Naive approach Given the noisy dataset (xi, ỹi)i∈[n] as per (1), a naive learning approach would
consist in ignoring the noisiness of the labels and training a given classifier, such as a Ridge classifier
which consists of minimizing the following:

L0(w) =
1

n

n∑
i=1

(w⊺xi − ỹi)
2 + γ∥w∥2,

where γ ≥ 0 is a regularization parameter. Therefore, the solution for the naive classifier is given by:

w0 =
1

n
Q(γ)Xỹ, Q(z) =

(
1

n
XX⊤ + zIp

)−1

,

where X = [x1, . . . ,xn] ∈ Rp×n and ỹ = (ỹ1, . . . , ỹn)
⊤ ∈ Rn.

Improved approach Natarajan et al. (2018) proposed an unbiased approach which takes into
account the noisiness of the labels. Specifically, given any bounded loss function ℓ(s, y), their
approach consists in considering:

ℓ̃(s, y) ≡ (1− ε−y)ℓ(s, y)− εyℓ(s,−y)

1− ε+ − ε−
.

The main intuition behind this proposition is that this loss has the nice property of being an unbiased
estimator of the loss ℓ(s, y) on the correct dataset (xi, yi)i∈[n], since it satisfies for any s, y:

Eỹ[ℓ̃(s, ỹ)] = ℓ(s, y).

In the remainder, we consider the following loss which introduces scalar parameters ρ±, to be
optimized, rather than ε±:

ℓ̃(s, y, ρ) ≡ (1− ρ−y)ℓ(s, y)− ρyℓ(s,−y)

1− ρ+ − ρ−
, (2)

Hence, for ℓ(s, y) = (s− y)2 and supposing a linear classifier s(x) = w⊤x, the empirical loss with
ℓ̃ reads as:

Lρ(w) =
1

n

n∑
i=1

(1− ρ−ỹi
)(w⊤xi − ỹi)

2 − ρỹi
(w⊤xi + ỹi)

2

1− ρ+ − ρ−
+ γ∥w∥2.

The solution of which defines our Labels-Perturbed Classifier (LPC) as follows:

wρ =
1

n
Q(γ)XDρỹ, Q(z) =

(
1

n
XX⊤ + zIp

)−1

, (3)

where Dρ is a diagonal matrix defined as Dρ = Diag
(

1−ρ−ỹi
+ρỹi

1−ρ+−ρ−
| i ∈ [n]

)
∈ Dn. In the remain-

der, we will study the performance of wρ which encapsulates the following cases:
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• Naive Classifier: which corresponds to ρ± = 0.
• Unbiased Classifier: by taking ρ± = ε± as introduced by Natarajan et al. (2018).
• Optimized Classifier: by optimizing ρ± to maximize the theoretical test accuracy.
• Oracle Classifier: which corresponds to training on the correct labels, i.e., ρ± = ε± = 0.

We aim to characterize the asymptotic performance (i.e., test accuracy and risk) of LPC in the
high-dimensional regime where both the sample size n and the data dimension p grow large at a
comparable rate, which corresponds to the classical random matrix theory (RMT) regime. Specifically,
our analysis confirms that the unbiased classifier outperforms the naive classifier in a low-dimensional
regime, i.e., when n ≫ p. In contrast, when considering the RMT regime, we show that the unbiased
classifier becomes sub-optimal and we provide an optimized classifier that consists of maximizing the
derived test accuracy w.r.t the scalars ρ± yielding a closed-form solution. This sheds light on the fact
that low-dimensional intuitions do not necessarily hold for high dimensions and careful refinements
should be considered to enhance the performance of simple algorithms in these settings. Moreover,
and of independent interest, our analysis allows us to design a method to estimate the rates ε± which
is a key step of our approach and the unbiased classifier (Natarajan et al., 2018).

3.2 RMT Background

In mathematical terms, the understanding of the asymptotic performance of the classifier wρ boils
down to the characterization of the statistical behavior of the resolvent matrix Q(z) introduced in (3).
In the following, we will recall some important notions and results from random matrix theory which
will be at the heart of our analysis. We start by defining the main object which is the resolvent matrix.

Definition 3.2 (Resolvent). For a symmetric matrix M ∈ Rp×p, the resolvent QM (z) of M is defined
for z ∈ C\S(M) as:

QM (z) = (M− zIp)
−1,

where S(M) is the set of eigenvalues or spectrum of M.

The matrix QM (z) will often be denoted Q(z) or Q when there is no ambiguity. In fact, the study of
the asymptotic performance of wρ involves the estimation of linear forms of the resolvent Q in (3),
such as 1

n TrQ and a⊤Qb with a, b ∈ Rp of bounded Euclidean norms. Therefore, the notion of a
deterministic equivalent (Hachem et al., 2007) is crucial as it allows the design of a deterministic
matrix, having (in probability or almost surely) asymptotically the same scalar observations as the
random ones in the sense of linear forms. A rigorous definition is provided below.
Definition 3.3 (Deterministic equivalent (Hachem et al., 2007)). We say that Q̄ ∈ Rp×p is a
deterministic equivalent for the random resolvent matrix Q ∈ Rp×p if, for any bounded linear form
u : Rp×p → R, we have that, as p → ∞:

u(Q)
a.s.−−→u(Q̄),

where the convergence is in the almost sure sense.

In particular, a deterministic equivalent for the resolvent Q(z) defined in (3) is given by the following
Lemma, a result that is brought from (Louart & Couillet, 2018).
Lemma 3.4 (Deterministic equivalent of the resolvent). Under the high-dimensional regime, when
p, n → ∞ with p

n → η ∈ (0,∞) and assuming ∥µ∥ = O(1). A deterministic equivalent for
Q ≡ Q(γ) as defined in (3) is given by:

Q̄ =

(
µµ⊤ + Ip

1 + δ
+ γIp

)−1

, δ =
1

n
Tr Q̄ =

η − γ − 1 +
√

(η − γ − 1)2 + 4ηγ

2γ
.

In a low-dimensional setting, i.e. when p being fixed while n → ∞, the resolvent Q converges
almost surely to

(
µµ⊤ + (1 + γ)Ip

)−1
which is also covered by Lemma 3.4 as δ → 0 in this setting.

However, when both p and n are large and comparable, the data dimension induces a bias which is
captured by the quantity δ as it becomes O(1) in the RMT regime. We will highlight in the following
that this bias alters the behavior of the classifier wρ in high dimensions, in particular, making the
unbiased classifier wε introduced by Natarajan et al. (2018) unexpectedly sub-optimal when learning
with noisy labels in high-dimensions.
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4 Main Results

4.1 Asymptotic Behavior of the Labels-Perturbed Classifier (LPC)

We are now in place to present our main technical result which describes the asymptotic behavior
of LPC as defined in (3). Specifically, we provide our results under the following growth rate
assumptions.
Assumption 4.1 (Growth Rates). Suppose that as p, n → ∞:

1) p
n → η ∈ (0,∞), 2) na

n → πa ∈ (0, 1), 3) ∥µ∥ = O(1),

where na denotes the cardinality of the class Ca for a ∈ [2].

We emphasize that the condition ∥µ∥ = O(1) reflects the fact that as the dimension p grows large,
the classification problem is neither impossible nor trivial making this assumption reasonable in the
considered high-dimensional regime. We refer the reader to (Couillet & Benaych-Georges, 2016) for
a more general formulation of this assumption under a k-class Gaussian mixture model.

Further, define the following quantities which will be used subsequently:

λ− =
1− ρ+ + ρ−
1− ρ+ − ρ−

, λ+ =
1− ρ− + ρ+
1− ρ+ − ρ−

, β =
1

1− ρ+ − ρ−
, h = 1− η

(1 + γ(1 + δ)2)
. (4)

Our main result is therefore given by the following theorem.
Theorem 4.2 (Gaussianity of LPC). Let wρ be the LPC as defined in (3) and suppose that Assumption
4.1 holds. The decision function w⊤

ρ x, on some test sample x ∈ Ca independent from X, satisfies:

w⊤
ρ x

D−→ N
(
(−1)amρ, νρ −m2

ρ

)
,

where:

mρ =
π1(λ− − 2βε−) + π2(λ+ − 2βε+)

∥µ∥2 + 1 + γ(1 + δ)
∥µ∥2,

νρ =
(π1(2βε− − λ−) + π2(2βε+ − λ+))

2

h(∥µ∥2 + 1 + γ(1 + δ))

( ∥µ∥2 + 1

∥µ∥2 + 1 + γ(1 + δ)
− 2(1− h)

)
∥µ∥2

+
(1− h)

h

(
π1(4β

2ε−(ρ+ − ρ−) + λ2
−) + π2(4β

2ε+(ρ− − ρ+) + λ2
+)
)
.

In a nutshell, Theorem 4.2 states that LPC is asymptotically equivalent to the thresholding of two
monovariate Gaussian random variables with respective means −mρ and mρ and second moment
νρ, where these statistics express in terms of the different parameters in our setting. Essentially,
Theorem 4.2 allows us to draw interpretations on the behavior of the different classifiers described
earlier. First, let us start by defining the statistics for the oracle classifier which corresponds to setting
ρ± = ε± = 0, yielding:

moracle =
∥µ∥2

∥µ∥2 + 1 + γ(1 + δ)
, νoracle = κ+

1− h

h
, (5)

where κ =
1

h(∥µ∥2 + 1 + γ(1 + δ))

( ∥µ∥2 + 1

∥µ∥2 + 1 + γ(1 + δ)
− 2(1− h)

)
∥µ∥2. (6)

Therefore, the statistics of the decision functions for the naive (ρ± = 0) and unbiased (ρ± = ε±)
classifiers are expressed respectively as follows:

Naive
{
mnaive = (1− 2(π1ε− + π2ε+)) ·moracle,

νnaive = (1− 2(π1ε− + π2ε+))
2 · κ+ 1−h

h .

Unbiased
{
munbiased = moracle,

νunbiased = κ+ 1−h
h

(
π1(4β

2ε−(ε+ − ε−) + λ2
−) + π2(4β

2ε+(ε− − ε+) + λ2
+)
)
.

From these quantities, we can explain the behavior of the different classifiers in the low-dimensional
versus high-dimensional regimes. In fact, when n ≫ p the dimensions ratio η → 0 implies that
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Figure 1: Distribution of the decision function w⊤
ρ x of different variants of LPC for n = 5000,

π1 = 1
3 , ε+ = 0.4, ε− = 0.3, ∥µ∥ = 2, γ = 0.1, p = 50 (first row) and p = 1000 (second row). The

theoretical Gaussian distributions are predicted as per Theorem 4.2. Note that the variance of the
decision function for the unbiased classifier increases with the dimension yielding poor accuracy.

h → 1 as per (4). Therefore, in the low-dimensional setting, the unbiased classifier statistics match
those of the oracle as expected. However, in the high-dimensional regime, i.e., when h ̸= 1, while the
unbiased classifier remains unbiased, the second moment gets amplified due to label noise, resulting
in a larger variance compared with the oracle classifier. Indeed, we have:

munbiased −moracle = 0,

νunbiased − νoracle =
1− h

h

(
π1(4β

2ε−(ε+ − ε−) + λ2
−) + π2(4β

2ε+(ε− − ε+) + λ2
+)− 1

)
̸= 0.

This behavior is highlighted in Figure 1 which depicts the histogram of the decision function for the
different classifiers along with the theoretical Gaussian distributions as per Theorem 4.2, in both
the low-dimensional and high-dimensional settings. Moreover, having characterized the distribution
of the decision function of wρ allows us to estimate its generalization performance such as the
test accuracy Atest and test risk Rtest which are defined respectively, for a test set (xtest

i , ytest
i )i∈[ntest]

independent from the training set with ytest
i being correct labels, as follows:

Atest =
1

ntest

ntest∑
i=1

1{sign(w⊤
ρ x

test
i ) = ytest

i }, Rtest =
1

ntest

ntest∑
i=1

(
w⊤

ρ x
test
i − ytest

i

)2
. (7)

Essentially, we have the following proposition under Assumption 4.1 and taking ntest → ∞.
Proposition 4.3 (Asymptotic test accuracy & risk of LPC). The asymptotic test accuracy and risk of
LPC wρ in (3), under Assumption 4.1 and as ntest → ∞, are respectively given by:

Atest
a.s.−−→ 1− φ

(
(νρ −m2

ρ)
− 1

2mρ

)
, Rtest

a.s.−−→ 1− 2mρ + νρ.

where mρ, νρ are defined in Theorem 4.2 and φ(x) = 1√
2π

∫ +∞
x

e−
t2

2 dt.

Figure 2 depicts both the empirical and theoretical test performance of LPC and its different vari-
ants, where we essentially notice a very accurate matching between simulation and the theoretical
predictions as per Proposition 4.3, even for a finite sample size. See Figure 5 in the Appendix for
more plots varying other parameters. In fact, even though we work under an asymptotic regime, our
estimation of Atest and Rtest by their asymptotic counterparts is consistent, as it can be shown that
their fluctuations are of order n− 1

2 under Assumption 4.1, this is a consequence of the concentration
results of the resolvent Q as shown in (Louart & Couillet, 2018).
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Figure 2: Test performance (accuracy and risk) of different LPC variants in terms of the positive
noise rate ε+. We considered n = 100, π1 = 1

3 , ε− = 0.2, ∥µ∥ = 2, γ = 10, ρ+ = 0.2 and ρ− = 0
(for LPC in blue). The theoretical curves are obtained as per Proposition 4.3. We notice that the effect
of label noise is more important in high-dimension, i.e., large values of η.

Interestingly, when observing the asymptotic test accuracy in terms of ρ+ and ρ− as depicted in
Figure 3, we remarkably find that the accuracy is maximized for any fixed ρ− at some value ρ∗+(ρ−),
and the maximum accuracy is higher than the unbiased accuracy in high-dimension. Moreover,
since φ(·) is monotonous, such maximizer can be obtained analytically by maximizing the ratio
(νρ −m2

ρ)
− 1

2mρ as derived in Appendix D, which yields the following closed-form expression:

ρ∗+(ρ−) =
π2
1ε−(ε− − 1) + π2

2ε+(1− ε+)

π1π2(1− ε+ − ε−)
+ ρ−. (8)

Therefore, our optimized classifier is defined by taking ρ− = 0 and ρ+ = ρ∗+(0) in the expression
of wρ as per (3). We notably notice that ρ∗+ depends solely on the noise probabilities ε± and the
class proportions π1 and π2, especially, it does not involve the SNR ∥µ∥, the regularization γ and the
dimension ratio η which is quite unexpected. We also notice that the worst performance of LPC with
parameters ρ̄+, ρ̄− (again ρ̄− can be fixed to 0) corresponds to the one of a random guess and can be
derived by solving mρ = 0 which yields (for π1 ̸= 1

2 ):

ρ̄+(ρ−) =
1− 2π1ε− − 2π2ε+

2π1 − 1
+ ρ−. (9)

Remark 4.4 (On the relevance of the RMT analysis). Our RMT analysis relies on the main assumption
that both p and n are large and comparable as per Assumption 4.1. This assumption is in fact
fundamentally crucial for exhibiting the maximizer ρ∗+ defined above. Indeed, supposing an infinite
sample size setting where p is fixed while taking only n → ∞ or alternatively h → 1, would result in
(νρ−m2

ρ)
− 1

2mρ → ∥µ∥. Therefore, the existence of ρ∗+ is only tractable under the large dimensional
setting, which motivates the importance of this assumption.

4.2 Estimation of label noise probabilities

Another important aspect of our optimized classifier is the fact that it supposes the prior knowledge of
the noise probabilities ε± which is also the case for the unbiased classifier of (Natarajan et al., 2018).
In this section, based on our theoretical derivations, we propose a simple procedure for estimating ε±

7
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Figure 3: Test accuracy of LPC by fixing ρ− = 0 and varying ρ+. We considered n = 1000,
π1 = 0.3, ∥µ∥ = 2, ε+ = 0.4, ε− = 0.3 and optimal γ. We notice that the test accuracy is
maximized at ρ∗+ yielding better accuracy compared with the unbiased approach. Note that for small
values of η, i.e., for low dimensions, the test accuracy becomes flat in terms of ρ+ and in the limit
η → 0 the maximizer ρ∗+ is not identifiable as discussed in Remark 4.4.

by supposing that the SNR ∥µ∥ and the class proportions π1, π2 are known, in fact the latest can be
consistently estimated with very few training samples as described in (Tiomoko et al., 2021).

To estimate ε±, we rely on the expression of the second moment νρ = νρ(ε+, ε−) as per Theorem
4.2, by viewing it as a function of ε±. Specifically, we consider two different arbitrary couples
ρ1 = (ρ1+, ρ

1
−) and ρ2 = (ρ2+, ρ

2
−) and solve the system:{

ν̂ρ1
= νρ1

(ε+, ε−),
ν̂ρ2

= νρ2
(ε+, ε−).

(10)

where ν̂ρ = 1
n

∑n
i=1(x

⊤
i w

−i
ρ )2 is the empirical estimate of νρ and w−i

ρ corresponds to LPC trained
on all examples except xi, which discards the statistical dependencies. Figure 6 depicts the estimated
versus ground truth value of ε+ and shows consistent estimation for different values of the SNR ∥µ∥.

5 Experiments with real data

In this section, we present experiments with real data to validate our approach. We use the Amazon
review dataset (Blitzer et al., 2007) which includes several binary classification tasks corresponding to
positive versus negative reviews of books, dvd, electronics and kitchen. We apply the standard
scaler from sklearn (Pedregosa et al., 2011) and estimate ∥µ∥ with the normalized data. Figure
4 depicts the histogram of the decision function of different LPC variants (Naive, Unbiased and
Optimized) along with the theoretical distribution as predicted by Theorem 4.2. We notably observe a
reasonable match between the empirical histograms and the theoretical predictions which validates
our results and assumptions even on real data. Note that, even though we considered a Gaussian
mixture model, our results extend beyond this assumption as we discussed in Remark 3.1. In fact,
our results can be derived under the more general setting of concentrated random vectors (Louart &
Couillet, 2018) which typically accounts GAN generated data (Seddik et al., 2020).

From a practical standpoint, we highlight that we estimate the SNR ∥µ∥ on the real data only for
plotting the theoretical distributions in Figure 4. In fact, our optimized classifier does not require the
knowledge of ∥µ∥ since ρ∗+ depends only on the class proportions πa’s and the noise probabilities
ε± as per (8). However, if the latest quantities are unknown, one can estimate them as we discussed
in the previous section and therefore the knowledge of ∥µ∥ is required, but can also be consistently
estimated with few data samples as discussed earlier. Moreover, as theoretically anticipated, the
optimized classifier outperforms the naive and unbiased classifiers in terms of accuracy. Table 1
shows the performance in terms of classification accuracy of the different classifiers, on different
datasets and varying the noise probabilities. We clearly observe that the optimized approach yields
spectacular performances which are almost close to the oracle that assumes perfect knowledge of the
true labels, even under a high noise regime. The code is provided in the supplementary material for
reproducibility of our empirical results.
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Figure 4: Histogram of the decision function of different LPC variants on the books dataset (Blitzer
et al., 2007), along with the theoretical distribution as predicted by Theorem 4.2. We considered
n = 1600, p = 400, π1 = 0.3, ε+ = 0.4, ε− = 0.3 and optimal γ.

Table 1: Accuracy comparison over Amazon review datasets (Blitzer et al., 2007) for n = 1600,
p = 400, π1 = 0.3, ε− = 0.4 and optimal γ. As theoretically anticipated, our optimized approach
yields better classification accuracy even approaching oracle trained with the true labels.

ε+ Sub-Dataset Naive (%) Unbiased (%) Optimized (%) Oracle (%)

0.3 Books 72.69 ± 0.11 71.66 ± 0.25 76.36± 0.21 78.78 ± 0.07
Dvd 73.75 ± 0.42 72.24 ± 0.3 77.43± 0.04 80.57 ± 0.12
Electronics 78.22 ± 0.05 77.22 ± 0.09 81.57± 0.12 83.22 ± 0.09
Kitchen 79.64 ± 0.07 78.62 ± 0.05 82.17± 0.06 84.28 ± 0.1

0.4 Books 66.84 ± 0.31 66.68 ± 0.22 75.69± 0.22 78.78 ± 0.07
Dvd 67.2 ± 0.37 67.33 ± 0.34 76.86± 0.16 80.57 ± 0.12
Electronics 72.13 ± 0.18 72.36 ± 0.06 81.04± 0.08 83.22 ± 0.09
Kitchen 73.46 ± 0.29 73.85 ± 0.23 81.65± 0.17 84.28 ± 0.1

0.5 Books 55.37 ± 0.25 59.5 ± 0.43 75.26± 0.19 78.78 ± 0.07
Dvd 55.32 ± 0.41 59.68 ± 0.57 76.42± 0.13 80.57 ± 0.12
Electronics 57.96 ± 0.11 63.21 ± 0.36 80.73± 0.01 83.22 ± 0.09
Kitchen 58.15 ± 0.61 64.71 ± 0.7 81.32± 0.11 84.28 ± 0.1

6 Conclusion & future directions

This paper introduced new insights into learning with noisy labels in high dimensions. Relying on
tools from random matrix theory, we provided an asymptotic characterization of the performance
of the introduced classifier which accounts for label noise through scalar quantities. Based on this
analysis, we identified that the low-dimensional intuitions to handle label noise do not extend to
high-dimension and developed a new approach that is proven to be more efficient by design. We also
showed through empirical evidence that our approach yields improved performance on real data.

In our current investigation, we restricted our analysis to the cases of squared loss and binary
classification. Our results can be extended beyond these settings by accounting for a general bounded
loss function ℓ(s, y) and multi-class classification problems. We provide in Appendix E some
experiments with synthetic and real data using the binary-cross-entropy loss function that show
similar behavior to the squared loss (see Figures 7 and 8), namely, the existence of an optimum
ρ∗± that outperforms the unbiased approach in high dimensions. The extension of our study to this
setting can be performed by leveraging the empirical risk minimization framework (El Karoui et al.,
2013; Mai & Liao, 2019) which allows the RMT analysis of general loss functions. Moreover, as we
provided in Appendix F, our results extend to a k-class classification setting where we empirically
show improved performance by optimizing a set of 2k scalar parameters (which play the same role
as ρ± of the binary case). Such extension is straightforward in the case of squared loss given our
current results and will be addressed in future work.
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Appendix

This appendix is organized as follows: Section A lists some useful lemmas that will be at the core of
our analysis. In Section B, we provide a more general result of Theorem 4.2 as discussed in Remark
3.1 along with the main proof derivations using RMT. Section C provides additional plots to support
our theoretical results. Section D provides derivations for finding the optimal parameter ρ∗+ which
defines our optimized classifier. In Section E we provide some experiments with synthetic and real
data to support the extension of our analysis to arbitrary loss functions instead of the squared loss as
supposed in the main paper. Finally, Section F presents experiments showing that our analysis can be
further extended to multi-class classification which is left for a future investigation.

A Useful lemmas

The following lemmas will be useful in the calculus introduced in this section.

Lemma A.1 (Resolvent identity). For invertible matrices A and B, we have:

A−1 −B−1 = A−1(B−A)B−1.

Lemma A.2 (Sherman-Morisson). For A ∈ Rp×p invertible and u,v ∈ Rp, A+ uv⊤ is invertible
if and only if: 1 + v⊤A−1u ̸= 0, and:

(A+ uv⊤)−1 = A−1 − A−1uv⊤A−1

1 + v⊤A−1u
.

Besides,

(A+ uv⊤)−1u =
A−1u

1 + v⊤A−1u
.

Lemma A.3 (Relevant Identities). Let Q̄ ∈ Rp×p be the deterministic matrix defined in lemma 3.4.
If Ca = Ip, then we have:

µ⊤Q̄µ =
(1 + δ)∥µ∥2

∥µ∥2 + 1 + γ(1 + δ)
, µ⊤Q̄2µ =

(
(1 + δ)∥µ∥

∥µ∥2 + 1 + γ(1 + δ)

)2

.

Proof. We have that:

Q̄ =

(
µµ⊤

1 + δ
+

(
γ +

1

1 + δ

)
Ip

)−1

= (1 + δ)
(
µµ⊤ + (1 + γ(1 + δ)Ip)

)−1

=
1 + δ

1 + γ(1 + δ)

(
µµ⊤

1 + γ(1 + δ)
+ Ip

)−1

=
1 + δ

1 + γ(1 + δ)

(
Ip −

µµ⊤

∥µ∥2 + 1 + γ(1 + δ)

)
(lemma A.2)

where the last equality is obtained using Sherman-Morisson’s identity (lemma A.2). Hence,

(Q̄)2 =
(1 + δ)2

(1 + γ(1 + δ))2

(
Ip +

(µµ⊤)2

(∥µ∥2 + 1 + γ(1 + δ))2
− 2µµ⊤

∥µ∥2 + 1 + γ(1 + δ)

)
First identity:

µ⊤Q̄µ =
(1 + δ)

(1 + γ(1 + δ))

(
∥µ∥2 − ∥µ∥4

∥µ∥2 + 1 + γ(1 + δ)

)
=

(1 + δ)∥µ∥2
∥µ∥2 + 1 + γ(1 + δ)
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Second identity:

µ⊤Q̄2µ =
(1 + δ)2

(1 + γ(1 + δ))2

(
∥µ∥2 + ∥µ∥6

(∥µ∥2 + 1 + γ(1 + δ))2
− 2∥µ∥4

∥µ∥2 + 1 + γ(1 + δ)

)
=

(1 + δ)2

(1 + γ(1 + δ))2

(
∥µ∥ − ∥µ∥3

∥µ∥2 + 1 + γ(1 + δ)

)2

=

(
(1 + δ)∥µ∥

∥µ∥2 + 1 + γ(1 + δ)

)2

Lemma A.4 (Deterministic equivalent of QAQ). For any positive semi-definite matrix A, we have:

QAQ ↔ Q̄AQ̄+
π1

n(1 + δ1)2
Tr(Σ1Q̄AQ̄)E[QΣ1Q] +

π2

n(1 + δ2)2
Tr(Σ2Q̄AQ̄)E[QΣ2Q],

where Σa = µµ⊤ +Ca. In particular, if C = Ip, i.e Σ = µµ⊤ + Ip then:

QAQ ↔ Q̄AQ̄+
1

n

Tr(ΣQ̄AQ̄)

(1 + δ)2
E[QΣQ].

Proof. Let Q̄ be a d.e. of Q. We have that:

E[QAQ] = E[Q̄AQ] + E[(Q− Q̄)AQ]

= Q̄(E[AQ] +AE[Q− Q̄]) + E[(Q− Q̄)AQ]

= Q̄AQ̄+ E[(Q− Q̄)AQ]

Using lemma A.1, we have that:

Q− Q̄ = Q(Q̄−1 −Q−1)Q̄

= Q

(
π1

Σ1

1 + δ1
+ π2

Σ2

1 + δ2
− 1

n
XX⊤

)
Q̄

= Q(S− 1

n
XX⊤)Q̄

Thus:

E[QAQ] = Q̄AQ̄+ E[Q(S− 1

n
XX⊤)Q̄AQ]

= Q̄AQ̄+ E[QSQ̄AQ]− 1

n

n∑
i=1

E[Qxix
⊤
i Q̄AQ]

We have that:

E[Qxix
⊤
i Q̄AQ] =

1

1 + δ
E[Q−ixix

⊤
i Q̄AQ]

=
1

1 + δi

(
E[Q−ixix

⊤
i Q̄AQ−i]− E[Q−ixix

⊤
i Q̄A

Q−ixix
⊤
i Q−i

n(1 + δi)
]

)
=

1

1 + δi

(
E[Q−iΣiQ̄AQ−i]− E[Q−ixix

⊤
i Q̄A

Q−ixix
⊤
i Q−i

n(1 + δi)
]

)
=

1

1 + δi

(
E[QΣiQ̄AQ]− E[Q−ixix

⊤
i Q̄A

Q−ixix
⊤
i Q−i

n(1 + δi)
]

)
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Hence, by replacing in the previous identity, we get:

E[QAQ] = Q̄AQ̄+
1

n

n∑
i=1

1

(1 + δi)2
E[Q−ixi

1

n
x⊤
i Q̄AQ−ixix

⊤
i Q−i]

= Q̄AQ̄+
1

n2

n∑
i=1

1

(1 + δi)2
Tr(ΣiQ̄AQ̄)E[Q−ixix

⊤
i Q−i]

= Q̄AQ̄+
1

n2

n∑
i=1

1

(1 + δi)2
Tr(ΣiQ̄AQ̄)E[QΣiQ]

= Q̄AQ̄+
π1

n(1 + δ1)2
Tr(Σ1Q̄AQ̄)E[QΣ1Q] +

π2

n(1 + δ2)2
Tr(Σ2Q̄AQ̄)E[QΣ2Q]

= Q̄AQ̄+
∑
b

πb

n(1 + δb)2
Tr(ΣbQ̄AQ̄)E[QΣbQ]

Hence, we conclude that:

QAQ ↔ Q̄AQ̄+
π1

n(1 + δ1)2
Tr(Σ1Q̄AQ̄)E[QΣ1Q] +

π2

n(1 + δ2)2
Tr(Σ2Q̄AQ̄)E[QΣ2Q]

B RMT Analysis of the Label-Perturbed Classifier

Notation: For a ∈ {1, 2}, we denote by Ia = {i | xi ∈ Ca}, i.e, the set of indices of vectors
belonging to class Ca. Furthermore, we denote Σa = E

[
xx⊤] for x ∈ Ca.

Assumption B.1 (Generalized growth rates). Suppose that as p, n → ∞:

1) p
n → η ∈ (0,∞), 2) na

n → πa ∈ (0, 1), 3) ∥µ∥ = O(1), 4) ∥Σa∥ = O(1),

∥Σa∥ is the spectral norm of the matrix Σa.

We consider the LPC with regularization parameter γ given by:

wρ =
1

n
Q(γ)XDρỹ, Q(z) =

(
1

n
XX⊤ + zIp

)−1

, (11)

where X = [x1, . . . ,xn] ∈ Rp×n and ỹ = (ỹ1, . . . , ỹn)
⊤ ∈ Rn.

Theorem B.2 (Gaussianity of LPC generalized). Let wρ be the LPC as defined in (3) and suppose
that Assumption B.1 holds. The decision function w⊤

ρ x, on some test sample x ∈ Ca independent
from X, satisfies:

w⊤
ρ x

D−→ N
(
(−1)amρ, νρ −m2

ρ

)
,

where:

mρ =

(
π1

(λ− − 2βε−)
1 + δ1

+ π2
(λ+ − 2βε+)

1 + δ2

)
µ⊤Q̄µ,

νρ =

(
π1(λ− − 2βε−)

1 + δ1
+

π2(λ+ − 2βε+)

1 + δ2

)2

µ⊤E[QΣaQ]µ

− T1

1 + δ1

((
π1(λ− − 2βε−)

1 + δ1

)2

µ⊤Q̄µ+
π1π2(λ+ − 2βε+)(λ− − 2βε−)

(1 + δ1)(1 + δ2)
µ⊤Q̄µ

)

+
π1(4β

2ε−(ρ+ − ρ−) + λ2
−)

(1 + δ1)2
T1 +

π2(4β
2ε+(ρ− − ρ+) + λ2

+)

(1 + δ2)2
T2

− T2

1 + δ2

((
π2(λ+ − 2βε+)

1 + δ2

)2

µ⊤Q̄µ+
π1π2(λ+ − 2βε+)(λ− − 2βε−)

(1 + δ1)(1 + δ2)
µ⊤Q̄µ

)
,

where Tb =
1
n Tr(ΣbE[QΣaQ]) for b ∈ [2] and E[QΣaQ] is computed with Lemma A.4.
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Let gρ(x) = w⊤
ρ x, to prove Theorem B.2, we need to compute the expectation and the variance of

gρ(x) which are developed below.

B.1 Test Expectation

Denote by λ̃i =
1−ρ−ỹi

+ρỹi

1−ρ+−ρ−
, then wρ = 1

n

∑n
i=1 Q(γ)λ̃iỹixi.

We have:

E [gρ(x)] = E
[
w⊤

ρ x
]
=

1

n

n∑
i=1

E
[
λ̃iỹix

⊤
i Qx

]
=

1

n

∑
i∈I1

E
[
λ̃iỹix

⊤
i Qx

]
+

1

n

∑
i∈I2

E
[
λ̃iỹix

⊤
i Qx

]
=

1

n

∑
i∈I1

E
[
λ̃iỹix

⊤
i Qµa | xi ∈ C1

]
+

1

n

∑
i∈I2

E
[
λ̃iỹix

⊤
i Qµa | xi ∈ C2

]
Recall that:

λ+ =
1− ρ− + ρ+
1− ρ+ − ρ−

, λ− =
1− ρ+ + ρ−
1− ρ+ − ρ−

, β =
λ− + λ+

2
(12)

Then:

E
[
λ̃iỹix

⊤
i Qµa | xi ∈ C1

]
= λ+ε−E

[
x⊤
i Qµa | yi = −1

]
− λ−(1− ε−)E

[
x⊤
i Qµa | yi = −1

]
= ((λ+ + λ−)ε− − λ−)E

[
x⊤
i Qµa | yi = −1

]
= (2βε− − λ−)E

[
x⊤
i Qµa | yi = −1

]
=

(2βε− − λ−)
1 + δ1

µ1Q̄µa

Similarly, we have:

E
[
λ̃iỹix

⊤
i Qµa | xi ∈ C2

]
= λ+(1− ε+)E

[
x⊤
i Qµa | xi ∈ C2

]
− λ−ε+E

[
x⊤
i Qµa | xi ∈ C2

]
= (λ+ − 2βε+)E

[
x⊤
i Qµa | xi ∈ C2

]
=

(λ+ − 2βε+)

1 + δ2
µ2Q̄µa

Therefore,

E [gρ(x) | x ∈ Ca] = π1
(2βε− − λ−)

1 + δ1
µ⊤

1 Q̄µa + π2
(λ+ − 2βε+)

1 + δ2
µ⊤

2 Q̄µa

= (−1)a
(
π1

(λ− − 2βε−)
1 + δ1

+ π2
(λ+ − 2βε+)

1 + δ2

)
µ⊤Q̄µ

B.2 Test Variance

To compute the variance of gρ(x), it only remains to compute the term: E[gρ(x)2].

E[gρ(x)2] =
1

n2

n∑
i,j=1

E[λ̃iλ̃j ỹiỹjx
⊤
i Qxx⊤

j Qx]

=
1

n2

∑
i∈I1

∑
j∈I1

E[λ̃iλ̃j ỹiỹjx
⊤
i Qxx⊤

j Qx | xi ∈ C1, xj ∈ C1]

+
2

n2

∑
i∈I1

∑
j∈I2

E[λ̃iλ̃j ỹiỹjx
⊤
i Qxx⊤

j Qx | xi ∈ C1, xj ∈ C2]

+
1

n2

∑
i∈I2

∑
j∈I2

E[λ̃iλ̃j ỹiỹjx
⊤
i Qxx⊤

j Qx | xi ∈ C2, xj ∈ C2]

Let us develop each sum.
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First sum We need to distinguish two cases here: case i = j and i ̸= j
- For i ̸= j :

E[λ̃iλ̃j ỹiỹjx
⊤
i Qxx⊤

j Qx | xi ∈ C1, xj ∈ C1] = E[λ̃iλ̃j ỹiỹjx
⊤
i Qxx⊤

j Qx | yi = −1, yj = −1]

= (λ2
−(1− ε−)

2 − 2λ−λ+ε−(1− ε−) + λ2
+ε

2
−)E[x⊤

i Qxx⊤
j Qx]

= (λ−(1− ε−)− λ+ε−)
2E[x⊤

i Qxx⊤
j Qx]

= (2βε− − λ−)
2E[x⊤

i Qxx⊤
j Qx]

We have that, knowing xi ∈ C1, xj ∈ C1 and i ̸= j

E[x⊤
i Qxx⊤

j Qx] = E[x⊤
i Qxx⊤Qxj ]

= E[x⊤
i QE[xx⊤]Qxj ] (x ⊥⊥ (xi)

n
i=1)

= E[x⊤
i QΣaQxj ]

=
1

(1 + δ1)2
E[x⊤

i Q−iΣaQ−jxj ]

=
1

(1 + δ1)2
E

[
x⊤
i

(
Q−ij −

1
nQ−ijxjx

⊤
j Q−ij

1 + δ1

)
Σa

(
Q−ij −

1
nQ−ijxix

⊤
i Q−ij

1 + δ1

)
xj

]
= A1 −A2 −A3 +A4

Let us compute each term now.

A1 =
1

(1 + δ1)2
E[xi⊤Q−ijΣaQ−ijxj ]

=
1

(1 + δ1)2
µ⊤E[Q−ijΣaQ−ij ]µ

=
1

(1 + δ1)2
µ⊤E[QΣaQ]µ

Hence
A1 =

1

(1 + δ1)2
µ⊤E[QΣaQ]µ (13)

And we have that:

A2 =
1

(1 + δ1)3
E[

1

n
x⊤
i Q−ijΣaQ−ijxix

⊤
i Q−ijxj ]

=
1

(1 + δ1)3
1

n
Tr(Σ1E[QΣaQ])E[x⊤

i Q−ijxj ]

=
1

(1 + δ1)3
1

n
Tr(Σ1E[QΣaQ])µ⊤Q̄µ

Since:
1

n
xi⊤Q−ijΣaQ−ijxi =

1

n
E[xi⊤Q−ijΣaQ−ijxi]

=
1

n
E[Tr(xixi⊤Q−ijΣaQ−ij)]

=
1

n
Tr(E[xixi⊤Q−ijΣaQ−ij ])

=
1

n
Tr(Σ1E[QΣaQ])

And we have that:
A2 = A3

And:
A4 = O(n−1)
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Thus finally:

E[x⊤
i Qxx⊤

j Qx | xi ∈ C1, xj ∈ C1] =
1

(1 + δ1)2

(
µ⊤E[QΣaQ]µ− 2

(1 + δ1)

1

n
Tr(Σ1E[QΣaQ])µ⊤Q̄µ

)
(14)

Thus:

E[λ̃iλ̃j ỹiỹjx
⊤
i Qxx⊤

j Qx | xi ∈ C1, xj ∈ C1] =
(2βε− − λ−)2

(1 + δ1)2

×
(
µ⊤E[QΣaQ]µ− 2

(1 + δ1)

1

n
Tr(Σ1E[QΣaQ])µ⊤Q̄µ

) (15)

- For i = j : we have that ỹ2i = 1 a.s, then knowing xi ∈ C1
E[λ̃2

i ỹ
2
i (x

⊤
i Qx)2] = (λ2

−(1− ε−) + λ2
+ε−)E[(x⊤

i Qx)2]

= (4β2ε−(ρ+ − ρ−) + λ2
−)E[(x⊤

i Qx)2]

And

E[(x⊤
i Qx)2] = E[x⊤

i Qxx⊤Qxi]

= E[x⊤
i QΣaQxi]

=
1

(1 + δ1)2
E[Tr(xix

⊤
i Q−iΣaQ−i)]

=
1

(1 + δ1)2
Tr(Σ1E[QΣaQ])

Thus:

E[λ̃2
i ỹ

2
i (x

⊤
i Qx)2 | xi ∈ C1] =

(4β2ε−(ρ+ − ρ−) + λ2
−)

(1 + δ1)2
Tr(Σ1E[QΣaQ]) (16)

Second sum: Here by definition, i ̸= j. And we have, knowing xi ∈ C1, xj ∈ C2:

E[λ̃iλ̃j ỹiỹjx
⊤
i Qxx⊤

j Qx | xi ∈ C1, xj ∈ C2]
= (λ2

−ε+(1− ε−)− λ+λ−(1− ε−)(1− ε+)− λ+λ−ε+ε− + λ2
+ε−(1− ε+))E[x⊤

i Qxx⊤
j Qx]

= (2βε+ − λ+)(λ− − 2βε−)E[x⊤
i Qxx⊤

j Qx]

And, we have that:

E[x⊤
i Qxx⊤

j Qx | xi ∈ C1, xj ∈ C2]
= E[x⊤

i QΣaQxj ]

=
1

(1 + δ1)(1 + δ2)
E[x⊤

i Q−iΣaQ−jxj ]

=
1

(1 + δ1)(1 + δ2)
E

[
x⊤
i

(
Q−ij −

1
nQ−ijxjx

⊤
j Q−ij

1 + δ2

)
Σa

(
Q−ij −

1
nQ−ijxix

⊤
i Q−ij

1 + δ1

)
xj

]

=
1

(1 + δ1)(1 + δ2)
(B1 −B2 −B3 +B4)

We have that:

B1 = E[x⊤
i Q−ijΣaQ−ijxj ] = −µ⊤E[QΣaQ]µ

And

B2 =
1

n(1 + δ1)
E[x⊤

i Q−ijΣaQ−ijxix
⊤
i Q−ijxj ]

=
1

n(1 + δ1)
Tr(Σ1E[QΣaQ])E[x⊤

i Q−ijxj ]

=
−1

n(1 + δ1)
Tr(Σ1E[QΣaQ])µ⊤Q̄µ
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And,

B3 =
1

n(1 + δ2)
E[x⊤

i Q−ijxjx
⊤
j Q−ijΣaQ−ijxj ]

=
1

n(1 + δ2)
E[x⊤

i Q−ijxj ] Tr(Σ2E[QΣaQ])

=
−1

n(1 + δ2)
Tr(Σ2E[QΣaQ])µ⊤Q̄µ

And B4 = O(n−1)
Thus, finally:

E[λ̃iλ̃j ỹiỹjx
⊤
i Qxx⊤

j Qx | xi ∈ C1, xj ∈ C2]

=
(λ+ − 2βε+)(λ− − 2βε−)

(1 + δ1)(1 + δ2)
(µ⊤E[QΣaQ]µ− 1

n(1 + δ1)
Tr(Σ1E[QΣaQ])µ⊤Q̄µ

− 1

n(1 + δ2)
Tr(Σ2E[QΣaQ])µ⊤Q̄µ)

Third sum: We have that
- For i ̸= j :

E[λ̃iλ̃j ỹiỹjx
⊤
i Qxx⊤

j Qx | xi ∈ C2, xj ∈ C2] = E[λ̃iλ̃j ỹiỹjx
⊤
i Qxx⊤

j Qx | yi = 1, yj = 1]

= (λ2
−ε

2
+ − 2λ−λ+ε+(1− ε+) + λ2

+(1− ε+)
2)E[x⊤

i Qxx⊤
j Qx]

= (λ−ε+ − λ+(1− ε+))
2E[x⊤

i Qxx⊤
j Qx]

= (2βε+ − λ+)
2E[x⊤

i Qxx⊤
j Qx]

Thus:

E[λ̃iλ̃j ỹiỹjx
⊤
i Qxx⊤

j Qx | xi ∈ C2, xj ∈ C2] =
(2βε+ − λ+)

2

(1 + δ2)2

(
µ⊤E[QΣaQ]µ− 2

(1 + δ2)

1

n
Tr(Σ2E[QΣaQ])µ⊤Q̄µ

)
(17)

- For i = j :

E[λ̃2
i ỹ

2
i (x

⊤
i Qx)2] = (λ2

−ε+ + λ2
+(1− ε+))E[(x⊤

i Qx)2]

= (4β2ε+(ρ− − ρ+) + λ2
+)E[(x⊤

i Qx)2]

=
(4β2ε+(ρ− − ρ+) + λ2

+)

(1 + δ2)2
Tr(Σ2E[QΣaQ])

Thus:

E[λ̃2
i ỹ

2
i (x

⊤
i Qx)2 | xi ∈ C2] =

(4β2ε+(ρ− − ρ+) + λ2
+)

(1 + δ2)2
Tr(Σ2E[QΣaQ]) (18)

Recall that we denoted by T1 = 1
n Tr(Σ1E[QΣaQ]) and T2 = 1

n Tr(Σ2E[QΣaQ]), we then deduce
that:
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Grouping all the terms:

E[gρ(x)2] =
(π1(λ− − 2βε−))2

(1 + δ1)2

(
µ⊤E[QΣaQ]µ− 2

1 + δ1
T1µ

⊤Q̄µ

)
+

π1(4β
2ε−(ρ+ − ρ−) + λ2

−)

(1 + δ1)2
T1

+
π1π2(λ+ − 2βε+)(λ− − 2βε−)

(1 + δ1)(1 + δ2)

(
µ⊤E[QΣaQ]µ− 1

1 + δ1
T1µ

⊤Q̄µ− 1

1 + δ2
T2µ

⊤Q̄µ

)
+

(π2(λ+ − 2βε+))
2

(1 + δ2)2

(
µ⊤E[QΣaQ]µ− 2

1 + δ2
T2µ

⊤Q̄µ

)
+

π2(4β
2ε+(ρ− − ρ+) + λ2

+)

(1 + δ2)2
T2

=

(
π1(λ− − 2βε−)

1 + δ1
+

π2(λ+ − 2βε+)

1 + δ2

)2

µ⊤E[QΣaQ]µ

− T1

1 + δ1

((
π1(λ− − 2βε−)

1 + δ1

)2

µ⊤Q̄µ+
π1π2(λ+ − 2βε+)(λ− − 2βε−)

(1 + δ1)(1 + δ2)
µ⊤Q̄µ

)

+
π1(4β

2ε−(ρ+ − ρ−) + λ2
−)

(1 + δ1)2
T1 +

π2(4β
2ε+(ρ− − ρ+) + λ2

+)

(1 + δ2)2
T2

− T2

1 + δ2

((
π2(λ+ − 2βε+)

1 + δ2

)2

µ⊤Q̄µ+
π1π2(λ+ − 2βε+)(λ− − 2βε−)

(1 + δ1)(1 + δ2)
µ⊤Q̄µ

)

Remark B.3. The expression E[QΣaQ] can be easily inferred from this identity (obtained using
lemma A.4):

E[QΣaQ] = Q̄ΣaQ̄+
π1

n(1 + δ1)2
Tr(Σ1Q̄ΣaQ̄)E[QΣ1Q]+

π2

n(1 + δ2)2
Tr(Σ2Q̄ΣaQ̄)E[QΣ2Q]

(19)
So we get a system of two linear independent equations on E[QΣ1Q] and E[QΣ2Q], and therefore
they are uniquely determined.

B.3 Isotropic Case

If C = Ip, then we have that:

δ1 = δ2 = δ, T1 = T2 =
1

n
Tr((ΣQ̄)2) =

η(1 + δ)2

(1 + γ(1 + δ))2
(20)

and using lemma A.4:

E[QΣQ] =
1

1− 1
n

Tr((ΣQ̄)2)
(1+δ)2

Q̄ΣQ̄ =
1

h
Q̄ΣQ̄ (21)

where :

h = 1− 1

n

Tr((ΣQ̄)2)

(1 + δ)2
= 1− η

(1 + γ(1 + δ))2
(22)

Hence, we get the following result:

Corollary B.4 (Gaussiannity of the label-perturbed classifier). Let wρ be the LPC with parameters
ρ±, and Q̄ a deterministic equivalent of Q defined in lemma 3.4. Under the same assumptions of 4.1:

w⊤
ρ x

D−→ N
(
(−1)amρ, νρ −m2

ρ

)
,
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where:

mρ =
π1(λ− − 2βε−) + π2(λ+ − 2βε+)

1 + δ
µ⊤Q̄µ,

νρ =
(π1(2βε− − λ−) + π2(2βε+ − λ+))

2

h(1 + δ)2

(
µ⊤Q̄ΣQ̄µ− 2

(1 + δ)

1

n
Tr((ΣQ̄)2)µ⊤Q̄µ

)
+

1

hn(1 + δ)2
π1(4β

2ε−(ρ+ − ρ−) + λ2
−) Tr((ΣQ̄)2)

+
1

hn(1 + δ)2
π2(4β

2ε+(ρ− − ρ+) + λ2
+) Tr((ΣQ̄)2).

We get Theorem 4.2 by simplifying further the expressions using lemma A.3 and 20:

mρ =
π1(λ− − 2βε−) + π2(λ+ − 2βε+)

∥µ∥2 + 1 + γ(1 + δ)
∥µ∥2,

νρ =
(π1(2βε− − λ−) + π2(2βε+ − λ+))

2

h(∥µ∥2 + 1 + γ(1 + δ))

( ∥µ∥2 + 1

∥µ∥2 + 1 + γ(1 + δ)
− 2(1− h)

)
∥µ∥2

+
(1− h)

h

(
π1(4β

2ε−(ρ+ − ρ−) + λ2
−) + π2(4β

2ε+(ρ− − ρ+) + λ2
+)
)
.

C Additional plots

Figure 5 shows a consistent estimation of the test accuracy of different LPC variants as predicted by
Proposition 4.3.

10−3 10−1 101 103

γ

0.64

0.66

0.68

T
es

t
A

cc
u

ra
cy

‖µ‖ = 0.5

10−3 10−1 101 103

γ

0.78

0.80

0.82

0.84

‖µ‖ = 1

10−3 10−1 101 103

γ

0.94

0.96

0.98
‖µ‖ = 2

Low-dimension

10−3 10−1 101 103

γ

0.50

0.55

T
es

t
A

cc
u

ra
cy

‖µ‖ = 0.5

10−3 10−1 101 103

γ

0.5

0.6

0.7

‖µ‖ = 1

10−3 10−1 101 103

γ

0.6

0.8

‖µ‖ = 2

High-dimension

Theory:

Simulation:

Oracle

Oracle

Optimized

Optimized

Unbiased

Unbiased

Naive

Naive

Figure 5: Empirical versus theoretical test accuracy as per Proposition 4.3 for different variants
of LPC. We used (n, p = 2000, 20) for Low-dimensional plot (n, p = 200, 200) and for High-
dimensional experiment, π1 = 0.3, ε+ = 0.4, ε− = 0.3 and varied γ.

Figure 6 shows the result of estimating ε+ using our approach as described in Section 4.2. We
particularly notice that the estimated value of ε+ is consistent even for small SNR ∥µ∥.
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Figure 6: Estimation of the label noise rates as described in Section 4.2. We used n = 1000, p = 100,
π1 = 1

3 , ε− = 0.2, (ρ(1)+ , ρ
(1)
− ) = (0, 0.1) and (ρ

(2)
+ , ρ

(2)
− ) = (0, 0.4).

D Finding optimal parameters

We denote by π = π1 the proportion of data belonging to C1 (hence π2 = 1 − π). Our goal is to
maximize the theoretical test accuracy as defined in 4.3 with respect to ρ+ for any fixed ρ−. This is

equivalent to maximizing the term
m2

ρ

νρ−m2
ρ

since φ(·) is a decreasing function. We have that:

r(ρ+) =
m2

ρ

νρ −m2
ρ

=
N1(ρ+)

D1(ρ+)

where:
N1(ρ+) = −hm2

oracle (π (2ϵ− + ρ+ − ρ− − 1)− (π − 1) (2ϵ+ − ρ+ + ρ− − 1))
2
(ρ+ + ρ− − 1)

2

and
D1(ρ+) = −h

(
κ−m2

oracle

)
(π (2ϵ− + ρ+ − ρ− − 1)− (π − 1) (2ϵ+ − ρ+ + ρ− − 1))

2
(ρ+ + ρ− − 1)

2

+ (h− 1)
(
π
(
4ϵ− (ρ+ − ρ−) + (−ρ+ + ρ− + 1)

2
)
+ (π − 1)

(
4ϵ+ (ρ+ − ρ−)− (ρ+ − ρ− + 1)

2
))

(ρ+ + ρ− − 1)
2

And differentiating r with respect to ρ+ gives us:

r′(ρ+) =
N2(ρ+)

D2(ρ+)

where :
N2(ρ+) = 2hm2

oracle(π(2ϵ− + ρ+ − ρ− − 1)− (π − 1)(2ϵ+ − ρ+ + ρ− − 1))

× (−(π(2ϵ− + ρ+ − ρ− − 1)− (π − 1)(2ϵ+ − ρ+ + ρ− − 1))

× (h(κ−m2
oracle)(2π − 1)(π(2ϵ− + ρ+ − ρ− − 1)− (π − 1)(2ϵ+ − ρ+ + ρ− − 1))(ρ+ + ρ− − 1)

+ h(κ−m2
oracle)(π(2ϵ− + ρ+ − ρ− − 1)− (π − 1)(2ϵ+ − ρ+ + ρ− − 1))2

− (h− 1)(π(4ϵ−(ρ+ − ρ−) + (−ρ+ + ρ− + 1)2) + (π − 1)(4ϵ+(ρ+ − ρ−)− (ρ+ − ρ− + 1)2))

− (h− 1)(π(2ϵ− + ρ+ − ρ− − 1) + (π − 1)(2ϵ+ − ρ+ + ρ− − 1))(ρ+ + ρ− − 1))

+ (h(κ−m2
oracle)(π(2ϵ− + ρ+ − ρ− − 1)− (π − 1)(2ϵ+ − ρ+ + ρ− − 1))2

− (h− 1)(π(4ϵ−(ρ+ − ρ−) + (−ρ+ + ρ− + 1)2) + (π − 1)(4ϵ+(ρ+ − ρ−)− (ρ+ − ρ− + 1)2)))

× (π(2ϵ− + ρ+ − ρ− − 1)− (π − 1)(2ϵ+ − ρ+ + ρ− − 1) + (2π − 1)(ρ+ + ρ− − 1)))

And finally, solving N2(ρ+) = 0 gives us two solutions:

ρ∗+ =
π2ϵ−(ϵ− − 1) + (1− π)2ϵ+(1− ϵ+)

π(1− π)(1− ϵ+ − ϵ−)
+ ρ−, ρ̄+ =

1− 2πε− − 2(1− π)ε+
2π − 1

+ ρ−.

E Loss Generalization

To investigate the extension of our approach to other bounded losses in addition to the squared loss
considered in the main paper, we evaluated our LPC trained with the label perturbed loss (2) using a
binary-cross-entropy loss, that is:

ℓ(s(x), y) = −y log (s(x))− (1− y) log (1− s(x)) , (23)
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where s(x) = 1
1+exp(−w⊤x)

and y is in {0, 1}. Figures 7 and 8 summarize the obtained test
accuracies by setting ρ− to zero and varying ρ+ on both synthetic and real data respectively. As
anticipated theoretically with the squared loss, we remark similar behavior about the existence of an
optimal ρ∗+ that maximizes the accuracy beyond the unbiased approach.
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Figure 7: Test Accuracy on Synthetic data with classifiers obtained through minimizing the binary-
cross-entropy loss using gradient descent. We used the parameters n = 1000, p = 1000, π1 = 0.3,
∥µ∥ = 2, ε+ = 0.4, ε− = 0.3 and a learning rate of 0.1.
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Figure 8: Test Accuracy on Dvd Amazon dataset (Blitzer et al., 2007) with classifiers obtained through
minimizing the binary-cross-entropy loss using gradient descent. We used the parameters n = 1600,
p = 400, π1 = 0.3, ∥µ∥ = 2, ε+ = 0.3, ε− = 0.2 and a learning rate of 0.1.
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F Multi-class extension: Multi-LPC

In this section, we provide some evidence to show that our setting can be further extended to
multi-class classification by considering the following settings.

F.1 Setting

We consider having a set of n i.i.d p-dimensional vectors x1,x2, ...,xn ∈ Rp and corresponding
labels y1, y2, ..., yn ∈ {1, ..., k} such that the xi’s are sampled from a Gaussian mixture of k clusters
C1, ..., Ck with, a ∈ {1, ..., k}:

xi ∈ Ca ⇔ xi = µa + zi,

where µa ∈ Rp and zi ∈ N (0, Ip). We consider that the true labels are flipped randomly to get
ỹ1, ỹ2, ..., ỹn such that for a, b ∈ {1, ..., k}:

P(ỹi = a | yi = b) = εa,b,

k∑
b=1

εa,b < 1. (24)

F.2 Linear model

Let yi ∈ Rk denote the one-hot encoding of the label yi, i.e., if xi ∈ Ca:

yi,j =

{
1 if j = a,

0 otherwise.

Denote the data matrix X = [x1, ...,xn] ∈ Rp×n and labels matrix Y = [y1, ...,yn] ∈ Rk×n.

Naive approach: We consider a linear model that consists of minimizing the following regularized
squared loss:

L(W) =
1

n

n∑
i=1

∥ỹi −W⊤xi∥+ γ∥W∥2F , (25)

where γ ≥ 0 is a regularization parameter, and ∥.∥F denotes the Frobenius norm of a matrix. The
minimizer of this equation reads explicitly as:

W =
1

n
Q(γ)XỸ⊤, Q(γ) =

(
1

n
XX⊤ + γIp

)−1

. (26)

Multi-LPC : Let us sort the data vectors (xi)
n
i=1 in X and their labels (ỹi)

n
i=1 in their matrices X

and Ỹ such that we put the vectors of class C1 in the first columns, then those of class C2, and so on.
Let Ỹ⊤ = [u1, ...,uk], each vector ui is defined in the following way:

ui,j =

{
1 if

∑i−1
a=1 ña ≤ j <

∑i
a=1 ña

0 otherwise
(27)

where ña is the number of noisy samples belonging to class Ca, i.e., the cardinality of this set
{i ∈ {1, ..., n} | ỹi = a}. Now let α1, ..., αk, β1, ..., βk ∈ R. Our Multi-LPC approach consists of
considering the following label matrix:

Y⊤
α,β = [α1u1 + β1(1n − u1), ..., αkuk + βk(1n − uk)] (28)

= Ỹ⊤D(α) + (M1 − Ỹ⊤)D(β) (29)

where M1 ∈ Rn×k is the matrix containing 1 in all its entries, and D(α) ∈ Rk×k (resp. ,D(β) ∈
Rk×k) is a diagonal matrix containing the coefficients α1, ..., αk (resp. β1, ..., βk) in its diagonal.
Thus the multi-class LPC classifier is defined as:

W =
1

n
Q(γ)XỸ⊤

α,β . (30)

Our aim is to show the existence of parameters (α∗
i )

k
i=1 and (β∗

i )
k
i=1 that maximize the accuracy of

the classifier.
Remark F.1. Remark that we can recover the Naive classifier in (25) by taking αi = 1 and βi = 0
for all i ∈ {1, ..., k}.
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F.3 Experiments

We tested our extension for k = 3 and k = 4 classes using synthetic data by taking:

For 3 classes (k = 3): We considered the following noise parameters matrix ε and the proportions
π of data in each class (πi is the proportion of data belonging to class Ci):

ε =

(
0 0.3 0
0 0 0.4
0.5 0 0

)
π = (0.3, 0.3, 0.4)

We also considered class C3 of mean vector µ3 of norm ∥µ3∥ = 2, class C1 of mean µ1 = −µ3 and
a centered class C2 (zero norm mean).

For 4 classes (k = 4): We considered the parameters:

ε =

 0 0 0.5 0
0 0 0 0.3
0 0.4 0 0
0.3 0 0 0

 π = (0.3, 0.2, 0.3, 0.2)

We also considered classes C3 and C4 of mean vectors µ3 and µ4 respectively such that: ∥µ3∥ = 2
and ∥µ3∥ = 6, and considered C1 of mean µ1 = −µ4 and C2 of mean µ2 = −µ3.

For each number of classes k, we found the optimal parameters (in terms of accuracy) α∗ = (α∗
i )

k
i=1

and β∗ = (β∗
i )

k
i=1 and also the worst ones ᾱ = (ᾱi)

k
i=1 and β̄ = (β̄)ki=1 within a grid of G = 5000

parameters, using Monte Carlo simulation. To visualize the results, we report the accuracy of the
Multi-LPC approach with the parameters ατ = τα∗ + (1 − τ)ᾱ and βτ = τβ∗ + (1 − τ)β̄ by
varying the parameter τ ∈ (0, 1). Figure 9 summarizes the obtained results and we clearly observe
improved accuracy for (α∗,β∗) even approaching the oracle classifier.

0.0 0.2 0.4 0.6 0.8 1.0

τ

0.0

0.2

0.4

0.6

T
es

t
A

cc
u

ra
cy

Number of classes k = 3

Naive

Oracle

Multi-LPC

0.0 0.2 0.4 0.6 0.8 1.0

τ

0.0

0.2

0.4

0.6

Number of classes k = 4

Figure 9: Multi-class classification with n = 2000, p = 200 evaluated on 3 random seeds.
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