
Effective Fine-tuning via Base Model Rescaling:
A Random Matrix Theory Perspective

Master’s Thesis report

15 April 2025 - 15 October 2025

Aymane EL FIRDOUSSI

Academic supervisors

Alexandre D’ASPREMONT (MVA, ENS Paris)

Olivier FERCOQ (Télécom Paris)

Lab supervisors

El Mahdi CHAYTI (EPFL)

Martin JAGGI (EPFL)

Acknowledgement

I would like to express my sincere gratitude to my internship supervisors, El Mahdi Chayti and Professor

Martin Jaggi, for their warm welcome to the Machine Learning and Optimization (MLO) Lab at EPFL

and for their invaluable guidance throughout the project. El Mahdi closely supervised my work on a daily

basis, and our numerous discussions were a constant source of insight and inspiration. Over time, I came

to regard him not only as a mentor but also as a close friend. I am grateful for the strong relationship we

built, which we look forward to continuing beyond this internship. I also wish to thank Professor Jaggi for

his constructive remarks and thoughtful criticism, which helped us reach the full potential of this project.

My gratitude extends as well to all members of the MLO Lab for their team spirit, dynamism, and hos-

pitality, which made me feel welcome and fully integrated during my stay at EPFL. Finally, I would like

to acknowledge my professors at ENS Paris an Télécom Paris, in particular Prof. Alexandre d’Aspremont

and Prof. Olivier Fercoq, for the solid knowledge imparted during coursework. Their teaching has laid

a strong foundation for my growth and development, and their contributions have been integral to my

academic and professional journey.

Abstract

Fine-Tuning has proven to be highly effective in adapting pre-trained models to perform better on new

desired tasks with minimal data samples. Among the most widely used approaches are reparameterization

methods, which update a target module by augmenting its frozen weight matrix with an additional trainable

weight matrix. The most prominent example is Low Rank Adaption (LoRA) (Hu et al., 2022) which gained

significant attention in recent years. In this work, we introduce a new class of reparameterization methods

for transfer learning, designed to enhance the generalization ability of fine-tuned models. We establish the

effectiveness of our approach in a high-dimensional binary classification setting using tools from Random

Matrix Theory, and further validate our theoretical findings through more realistic experiments such as

fine-tuning large language models. Finally, we extend our analysis to multi-source and regression transfer

settings, highlighting the generality and robustness of our approach. Overall, this work provides both theo-

retical insight and practical algorithms that bridge Random Matrix Theory and efficient model adaptation.

Contents

Contents

1 Introduction and contributions 5

2 Related work 6

3 Theoretical setting and mathematical background 8

3.1 Theoretical Setting . 8

3.2 RMT Background . 10

4 Main Theoretical Results 12

4.1 RMT Assumptions . 12

4.2 Theoretical performance with Ridge source classifier . 12

4.3 Theoretical performance with arbitrary source classifier . 15

4.4 Conclusion of our theory . 17

5 Experiments 17

5.1 Within our theoretical model: Linear Binary Classification 17

5.2 Beyond our theoretical model: Supervised Fine-tuning for LLMs 19

6 Multi-source Transfer Learning 22

6.1 Asymptotic distribution of the test . 22

6.2 Characterization of the optimal scaling factors . 23

7 The case of regression: fine-tuning a weight matrix 24

8 Discussion and Conclusion 28

A Useful results 33

A.1 General lemmas . 33

A.2 Deterministic equivalents . 33

B RMT Analysis of the fine-tuned classifier 39

B.1 Test Expectation . 39

B.2 Test Variance . 40

B.3 Finding optimal scaling parameter . 45

C RMT analysis for arbitrary source classifier 45

C.1 Test Expectation . 46

C.2 Test variance . 46

3

Contents

D Extension to Multi-Source Transfer Learning 49

D.1 Test Expectation . 49

D.2 Test variance . 50

E Extension to Linear Regression Transfer 53

E.1 Preliminary results . 53

E.2 Test error . 54

E.3 Optimal scaling parameter . 60

F LLMs experimental details 60

F.1 Hyperparameters . 60

F.2 Values of scaling parameters . 60

4

1 Introduction and contributions

1 Introduction and contributions

Large foundational models have driven major advances in artificial intelligence across domains such as

computer vision and natural language processing. Examples include transformer-based models (Vaswani

et al., 2017) operating in natural language domain, known as Large Language Models (LLMs), such as

Gemini (Team et al., 2023) and Llama (Grattafiori et al., 2024), and on the vision domain such as Vision

Transformers (Dosovitskiy et al., 2020). Such models are specifically known for their relatively large size

and massive training corpus, which makes them more powerful and adapted for many use cases. However,

even with their extensive pre-training, these large models may not excel at some specific tasks without fur-

ther adjustment. To achieve improvements of this kind, a process known as Fine-Tuning is often needed.

Fine-tuning involves adapting a pre-trained model to a target task by continuing its training on task-

specific data. Unlike training from scratch, fine-tuning leverages the general representations learned dur-

ing pre-training and refines them to capture task-relevant information, thereby improving performance

while reducing data and computational requirements. The most common class of fine-tuning methods is

Supervised Fine-Tuning (SFT), which relies on labeled data in that process, and one of the most popular

lightweight SFT methods is Low-Rank Adaptation (LoRA) (Hu et al., 2022), which updates the desired

module by adding a low-rank perturbation to the original (frozen) weight matrix.

In this project, we study fine-tuning through the lens of Random Matrix Theory (RMT), where we in-

troduce a theoretical framework to understand and improve transfer learning. Leveraging the theoretical

findings, our key practical idea in the context of LoRA is to scale the frozen weights row-wise with a

vector α before adaptation, thereby adding a new degree of freedom to the fine-tuning process. We show

that this modification leads to an optimal scaling factor α∗, which is typically different from the standard

choice (α = 1). We analyze this framework in a high-dimensional binary classification setting under a

Gaussian Mixture Model, proving the existence of an optimal α∗ while providing its closed-form expres-

sion in terms of scalar data-dependent quantities. We then validate our theoretical insights on real tasks,

including transfer learning benchmarks and large language model fine-tuning, in addition to extending the

theoretical results to other classification and regression settings.

Summary of contributions. Our work on fine-tuning is novel and presents many contributions to the

community, which we summarize as follows:

1. We introduce a new class of Supervised Fine-Tuning algorithms characterized by an additional scaling

parameter α.

2. We theoretically prove the existence of an optimal parameter α ̸= 1 and derive its expression in

binary classification.

3. We propose an algorithm for finding such optimal α for complex scenarios such as fine-tuning language

models.

5

2 Related work

2 Related work

Transfer Learning foundations. Transfer Learning (TL) studies how knowledge acquired in a source

task or domain can be reused to improve learning in a related target task. Early surveys (Pan & Yang, 2009;

Weiss et al., 2016) outlined key settings such as domain adaptation and multitask learning. A foundational

study by Ben-David et al. (2010) established generalization bounds that relate target error to source error

and distributional divergence, providing theoretical criteria for effective transfer. Building on this, Maurer

et al. (2016) showed that shared representations across tasks can reduce sample complexity in multitask

settings, further emphasizing the role of representation learning. Tripuraneni et al. (2020) analyzed the

impact of task diversity on TL and show that by learning a shared feature representation from diverse

tasks, the amount of data needed for a new task is greatly reduced, scaling only with the complexity of the

new task itself, rather than the complexity of the entire system. Other works such as (Hanneke & Kpotufe,

2024; Zhang et al., 2021; Klivans et al., 2024; Kpotufe & Martinet, 2021; Cai & Wei, 2021; Reeve et al.,

2021) have tackled TL theoretically each from a different perspective and on a different setting (regression

or classification).

Fine-Tuning pre-trained models. With the advent of large-scale pretraining, fine-tuning has become

the dominant strategy for transfer learning. The most popular fine-tuning techniques are Supervised Fine-

Tuning (SFT) and fine-tuning with Reinforcement Learning (RL). RL-based approaches such as RLHF

(Ouyang et al., 2022), DPO (Rafailov et al., 2023), GRPO (Ramesh et al., 2024; Guo et al., 2025) and

other variants are specifically effective on reasoning and mathematics tasks, where they often outperform

SFT (Shenfeld et al., 2025). In this paper, however, we only focus on SFT techniques. In fact, SFT extends

the training of the given pre-trained model using labeled data. However, as the size of used pre-trained

models is generally large, a common approach to fine-tuning is to modify a small fraction of the model’s

parameters while leaving most of them unmodified. This strategy, known as Parameter-Efficient Fine-

Tuning (PEFT) (Xu et al., 2023), aims to achieve strong performance with minimal parameter updates.

PEFT methods are usually grouped into three categories: additive, selective, and reparameterized (Ji et al.,

2025).

Additive Fine-Tuning. The most popular additive fine-tuning approach is Adapters (Houlsby et al.,

2019; He et al., 2021), which adds a minimal number of new trainable parameters that are strategically

positioned within the model architecture, while keeping the rest of the model frozen. Variants explore

different placement strategies, scaling, and modular reuse (Pfeiffer et al., 2020; Karimi Mahabadi et al.,

2021). These added layers/modules act as computational bottlenecks, refining the model’s output while

leveraging the existing pre-trained parameters.

Selective Fine-Tuning. Unlike additive PEFT, selective PEFT does not add extra layers or modules

to the original model, but updates a specific subset of the existing parameters within the model. This is

achieved for instance by applying a binary mask to the model’s parameters, where each element of the mask

is either 0 or 1, indicating whether the corresponding parameter should be updated during fine-tuning.

6

2 Related work

Popular selective techniques include Diff pruning (Guo et al., 2020), FishMask (Sung et al., 2021) and PaFi

(Liao et al., 2023).

Reparameterized Fine-Tuning. Reparameterization-based fine-tuning adapts a model by expressing

its parameters in an alternative form, commonly through a low-rank decomposition, to reduce training

costs, while the full weight matrices are reconstructed for inference. The most common technique in this

class is Low Rank Adaptation (LoRA) (Hu et al., 2022), which introduces small, trainable matrices op-

erating alongside the pre-trained weights to inject task-specific updates without burdening the inference

process. Many extensions were proposed to enhance the efficiency of LoRA by either acting on the initial-

ization of the low rank modules (Hayou et al., 2024a), their learning rates (Hayou et al., 2024b), normalizing

the updates (Liu et al., 2024), setting adaptive ranks (Kim et al., 2024; Lu et al., 2024), finding optimal

placements for LoRA modules (Hayou et al., 2025), and more (Zhang et al., 2023b; Dettmers et al., 2023;

Kopiczko et al., 2023; Zhang et al., 2023a; Tian et al., 2024; Jiang et al., 2024).

While prior work has proposed numerous variants of LoRA that adjust ranks, placements, or normalization

schemes, little attention has been paid to the scaling of frozen weights themselves. Our work is comple-

mentary to these approaches: rather than modifying the structure of the low-rank modules, we focus on

the scaling dynamics of the pre-trained component and provide the first theoretical analysis of its impact

using Random Matrix Theory.

7

3 Theoretical setting and mathematical background

3 Theoretical setting and mathematical background

It is common in Machine Learning research that in order to prove the effectiveness of some method or

algorithm, we theoretically analyze it in simple settings and then use the obtained results to build insights

and intuitions on more complex settings (such as LLMs). Thus, to prove the effectiveness of our new family

of fine-tuning algorithms, we will theoretically analyze a binary classification setting under a Gaussian

Mixture Model (GMM) using tools from Random Matrix Theory (RMT). Through this analysis, we will

prove the existence of an optimal scaling parameter α⋆ and derive its exact theoretical formulation for

these settings.

3.1 Theoretical Setting

The goal is to fine-tune a linear classifier, initially pretrained on a dataset called source, in order to

perform a target task given a relatively small target data corpus.

Pre-training phase. We consider that we are given pairs of pre-training (source) data samples {(x̃i, ỹi)}Ni=1

that are distributed, for x̃i ∈ Ca with a ∈ {1, 2}, as follows:

x̃i ∈ Ca ⇔

x̃i = µa + z̃i, z̃i ∼ N (0, Ip),

ỹi = (−1)a.
(1)

For convenience and without loss of generality, we further assume that µa = (−1)aµ for some vector

µ ∈ Rp. This setting can be recovered by subtracting µ1+µ2

2 from each data point, as such µ = µ2−µ1

2 and

therefore the SNR ∥µ∥ controls the difficulty of the classification problem, in the sense that large values

of ∥µ∥ yield a simple classification problem whereas when ∥µ∥ → 0, the classification becomes impossible.

Remark 3.1 (On the data model). Note that the above data assumption can be relaxed (generalized) to

considering xi = µa + C
1
2
a zi where Ca is some semi-definite covariance matrix and zi are random vectors

with i.i.d entries of mean 0, variance 1 and bounded fourth order moment. In fact, in the high-dimensional

regime when n, p → ∞, the asymptotic performance of the classifier considered subsequently is universal

in the sense that it depends only on the statistical means and covariances of the data (Louart & Couillet,

2018; Seddik et al., 2020; Dandi et al., 2024). However, such a general setting comes at the expense of

more complex formulas, making the above isotropic assumption more convenient for readability and better

interpretation of our findings.

Denoting X̃ = [x̃1, . . . , x̃N] ∈ Rp×N the data matrix and ỹ = [ỹ1, . . . , ỹN]⊤ ∈ RN the corresponding labels

vector, we have in matrix form:

X̃ = µỹ⊤ + Z̃, (2)

where Z̃ is a random matrix with N (0, 1) i.i.d. entries.

We then consider training a classifier, called w̃, on this source dataset by optimizing:

min
w

1

N

N∑
i=1

ℓ(w⊤xi, yi) + γ̃∥w∥22 (3)

8

3 Theoretical setting and mathematical background

for some loss function ℓ and a positive regularization parameter γ̃ > 0. Taking a generic loss function, such

as the binary cross entropy, leads to intractable solution w̃. Fortunately, Mai & Liao (2024) show that in

the case of a Gaussian mixture data model or more generally a data distribution with finite fourth-order

moment (remark 3.1), it is possible to optimize such classifier using the squared (L2) loss function, which

also gives a closed-form solution to this problem. Thus, taking ℓ(x, y) = (x − y)2 leads to the following

optimization problem:

w̃ = arg minv

1

N

∥∥∥X̃⊤v − ỹ
∥∥∥2
2

+ γ̃∥v∥22, (4)

Which gives us the following solution:

w̃ =
1

N
RX̃ỹ, R =

(
1

N
X̃X̃⊤ + γ̃Ip

)−1

(5)

Fine-tuning phase. During the fine-tuning phase, we suppose that we are given pairs of target data

{(xi, yi)}ni=1 with yi ∈ {−1, 1} that are distributed such that X = [x1, . . . ,xn] ∈ Rp×n is given by:

X = µβy
⊤ + Z, µβ = βµ + µ⊥, (6)

where Z is a random matrix with N (0, 1) i.i.d. entries, µ⊥ is an orthogonal vector to µ and the factor

β ∈ R quantifies the alignment between the source and target data, as we have that: ⟨µβ,µ⟩ = β∥µ∥2.
The goal is to leverage the original classifier w̃ to train a new classifier on this target dataset. The standard

reparameterization approach for doing so is modeled by adding a trainable classifier to w̃, and then training

it on the target data, i.e solving:

min
v

1

n

∥∥∥X⊤ (w̃ + v) − y
∥∥∥2
2

+ γ∥v∥22

However, we can generalize this method even further by introducing a scaling parameter to the pre-trained

classifier w̃, which adds up a new degree of freedom to this learning process and makes a better use of the

pretraining phase. Thus, leveraging the pre-trained weights w̃ ∈ Rp, we consider the training of adapter

weights a as:

a = arg minv

1

n

∥∥∥X⊤ (αw̃ + v) − y
∥∥∥2
2

+ γ∥v∥22, (7)

for a scalar α ∈ R. Solving the previous minimization problem, a expresses as:

a =
1

n

(
1

n
XX⊤ + γIp

)−1 (
Xy − αXX⊤w̃

)
. (8)

We define the resolvent matrices Q and R by:

Q =

(
1

n
XX⊤ + γIp

)−1

, R =

(
1

N
X̃X̃⊤ + γ̃Ip

)−1

, (9)

Then our obtained fine-tuned classifier wα writes:

wα = αw̃ + a =
1

n
Q(γ)Xy + αγQw̃

9

3 Theoretical setting and mathematical background

We denote by w ≡ w0 the classifier obtained through learning directly on target data (without fine-tuning),

which is given by:

w =
1

n
Q(γ)Xy (No-FT)

Then we finally get the expression of our α-Fine-tuned classifier as follows:

wα = w + αγQw̃ (α-FTC)

Remark 3.2 (About the interpretability of our fine-tuned classifier). Remark that the parameter α in-

troduced in the expression of the fine-tuned classifier wα characterizes the contribution of each training

dataset (source and target) to the test performance on the target task. In fact, since the prediction of the

class label does not change by multiplying wα by a positive constant, then by taking a positive α and for

ρ = α
1+α ∈ (0, 1), the fine-tuned classifier is equivalent to this convex weighted classifier:

wρ = ρw̃ + (1 − ρ)a

and therefore, this new parameter ρ can be interpreted as the percentage of the contribution of the source

task to the test performance on the target task.

Remark 3.3 (About the regularization parameter γ). We remark from the expression of wα in (α-FTC)

that the weight decay γ is essential to have the dependence of wα on α. In fact, taking γ → 0 leads to a

fine-tuned classifier of the form:

wα = (XX⊤)+Xy

where (XX⊤)+ is the Moore-Penrose inverse of the symmetric semi-definite matrix XX⊤. Therefore, the

obtained classifier does not depend on α here, nor on the pre-trained model w̃. Additionally, having such a

regularization technique is essential in transfer learning since the target dataset is generally much smaller

than the pre-training one, and therefore the fine-tuning process can easily lead to overfitting in the absence

of a regularization technique.

3.2 RMT Background

To theoretically study the fine-tuned classifier wα, we can leverage tools from Random Matrix Theory. In

mathematical terms, the understanding of the asymptotic performance of the classifier wα boils down to

the characterization of the statistical behavior of the resolvent matrices Q(z) and R(z) introduced in (9).

In the following, we will recall some important notions and results from random matrix theory, which will

be at the heart of our analysis. We start by defining the main object, which is the resolvent matrix.

Definition 3.4 (Resolvent). For a symmetric matrix M ∈ Rp×p, the resolvent QM (z) of M is defined for

z ∈ C\S (M) as:

QM (z) = (M− zIp)
−1,

where S (M) is the set of eigenvalues or spectrum of M.

10

3 Theoretical setting and mathematical background

In fact, the study of the asymptotic performance of wα involves the estimation of linear forms of the

resolvents Q and R in (9), such as 1
n TrQ and a⊤Qb with a, b ∈ Rp of bounded Euclidean norms.

Therefore, the notion of a deterministic equivalent (Hachem et al., 2007) is crucial as it allows the design of a

deterministic matrix, having (in probability or almost surely) asymptotically the same scalar observations

as the random ones in the sense of linear forms. A rigorous definition is provided below.

Definition 3.5 (Deterministic equivalent (Hachem et al., 2007)). We say that Q̄ ∈ Rp×p is a deterministic

equivalent for the random resolvent matrix Q ∈ Rp×p if, for any bounded linear form u : Rp×p → R, we
have that, as p → ∞:

u(Q)
a.s.−−→u(Q̄),

where the convergence is in the almost sure sense.

In particular, a deterministic equivalent for the resolvents Q(z) and R(z) defined in (9) is given by the

following Lemma.

Lemma 3.6 (Deterministic equivalent of Q and R). Under the high-dimensional regime, when

p, n,N → ∞ with p
n → η ∈ (0,∞) and p

N → η̃ ∈ (0,∞) and assuming ∥µ∥ = O(1), a deterministic

equivalent for Q ≡ Q(γ) and for R ≡ R(γ), previously defined in (9), denoted Q̄ and R̄ respectively,

are given by:

Q̄(γ) =

(
µβµ

⊤
β + Ip

1 + δQ
+ γIp

)−1

, R̄(γ) =

(
µµ⊤ + Ip

1 + δR
+ γIp

)−1

.

Where:

δQ =
1

n
Tr Q̄ =

η − γ − 1 +
√

(η − γ − 1)2 + 4ηγ

2γ
, δR =

η̃ − γ̃ − 1 +
√

(η̃ − γ̃ − 1)2 + 4η̃γ̃

2γ̃
.

Proof. We will prove the deterministic equivalent of Q, and the proof of R̄ can be derived similarly. In

general, we want to find a deterministic equivalent Q̄ of the same form of Q, i.e we consider Q̄(γ) =

(S + γIp)
−1 and we want to find a deterministic matrix S ∈ Rp×p such that for any linear form u:

u(Q)
a.s.−−→u(Q̄),

Or more simply:

u(E[Q] − Q̄) → 0.

We have that:

E[Q] − Q̄ = E[Q− Q̄]

= E[Q

(
S− 1

n
XX⊤

)
Q̄]

= E

[(
QS− 1

n

n∑
i=1

Qxix
⊤
i

)
Q̄

]

11

4 Main Theoretical Results

And since: Qxi = Q−ixi

1+δQ
and that we want E[Q] = Q̄ in linear forms, we get that:

E

[(
QS− 1

n

n∑
i=1

Qxix
⊤
i

)
Q̄

]
= Q̄SQ̄− 1

n

n∑
i=1

1

1 + δQ
E[Q−ixix

⊤
i]Q̄

= Q̄SQ̄− 1

n

n∑
i=1

1

1 + δQ
Q̄(µβµ

⊤
β + Ip)Q̄ (xi ⊥⊥ Q−i)

= Q̄

(
S−

µβµ
⊤
β + Ip

1 + δQ

)
Q̄

Finally, it suffices to take: S =
µβµ

⊤
β +Ip

1+δQ
to get the desired result.

4 Main Theoretical Results

After having defined the setting and needed background, we will now present our main technical results,

which describe the asymptotic behavior of the fine-tuned classifier defined in (α-FTC).

4.1 RMT Assumptions

We provide our results under the following growth rate assumptions (classical assumptions in Random

Matrix Theory).

Assumption 4.1 (Growth Rates). Suppose that as p, n,N → ∞:

1) p
n → η ∈ [0,∞), 2) p

N → η̃ ∈ [0,∞), 3) ∥µ∥ = O(1), 4) ∥µβ∥ = O(1).

The first and second assumptions simply state that our analysis considers both the low (η, η̃ ≪ 1) and

high (η, η̃ ≫ 1) dimensional regimes. The third and last assumptions are also fundamental and state that

the norm of the source µ and target µβ data means do not scale with the dimension p, which makes the

classification problem neither easy (∥µ∥ → ∞) nor impossible (∥µ∥ → 0) in high dimensions.

4.2 Theoretical performance with Ridge source classifier

Having stated the main assumptions, we are now in a position to present our main technical findings about

the theoretical test performance of the fine-tuned classifier α-FTC. But beforehand, let us define some

scalar quantities that will be useful in our derivations:

λQ = ∥µβ∥2 + 1 + γ(1 + δQ), λR = ∥µ∥2 + 1 + γ̃(1 + δR), h = 1 − η

(1 + γ(1 + δQ))2
,

h̃ = 1 − η̃

(1 + γ̃(1 + δR))2

Our main theorem below describes the behavior of the decision function of our fine-tuned classifier.

12

4 Main Theoretical Results

Theorem 4.2 (Gaussianity of the fine-tuned Ridge model). Let wα be the fine-tuned classifier as

defined in (α-FTC) and suppose that Assumption 4.1 holds. The decision function w⊤
αx, on some

test sample x ∈ Ca independent of X, satisfies:

w⊤
αx

D−→ N
(
(−1)amα, να −m2

α

)
,

where:

mα =
1

λQ

(
∥µβ∥2 +

αβγ(1 + δQ)

λR
∥µ∥2

)
,

να = T1 + αT2 + α2T3.

With:

T1 =
∥µβ∥2
hλQ

(∥µβ∥2 + 1

λQ
− 2(1 − h)

)
+

1 − h

h
,

T2 =
2γβ(1 + δQ)∥µ∥2

λRλQ

(
1 − γ(1 + δQ)

hλQ

)
,

T3 =
γ2(1 + δQ)2

h
×[

∥µ∥2
λ2
R

(
β2∥µ∥2
λ2
Q

+
1 − h

η

(
1 +

β2∥µ∥2∥µβ∥2
λ2
Q

− 2β2∥µ∥2
λQ

+ (1 − h̃)

(
1 − 2∥µ∥2

λR

)))]

In simple terms, Theorem 4.2 states that the decision function of the classifier (α-FTC) is asymptotically

equivalent to the thresholding of two monovariate Gaussian random variables with respective means mα

and −mα and standard deviation να −m2
α, where the statistics mα and να are expressed in terms of the

scalar quantities defined above. This behavior is highlighted in Figure 1 which depicts the histogram of

the decision function for the different values of α and β along with the theoretical Gaussian distributions

as per Theorem 4.2. The gaussian distribution comes from Lyupanov’s Central Limit theorem, so we only

needed to compute the first and second order moments of the decision function w⊤
αx (for a test sample x)

to prove the above theorem, which was presented in details in Appendix B.

Having characterized the distribution of the decision function of wα, we can now estimate its general-

ization performance, such as its test accuracy. In fact, the theoretical test missclassification of wα is equal

to the shaded area between the two histograms (intersection) in Figure 1, and since the histograms are of

Gaussian laws, we have the exact formula to compute this desired quantity which we state in the following

proposition:

Proposition 4.3 (Asymptotic test accuracy of wα). The asymptotic test accuracy of wα defined in

(α-FTC), under Assumptions 4.1 as the number of test samples ntest → ∞, is given by:

Atest
a.s.−−→ 1 − φ

(
(να −m2

α)−
1
2mα

)
, where: φ(x) =

1√
2π

∫ +∞

x
e−

t2

2 dt.

13

4 Main Theoretical Results

−2 0 2

w>αx

0.00

0.25

0.50

0.75

β
=

0.
3

α = 0.1

−2 0 2

w>αx

0.00

0.25

0.50

0.75
α = 1

−10 0 10

w>αx

0.00

0.05

0.10

0.15
α = 10

−2 0 2

w>αx

0.0

0.5

1.0

β
=

0.
8

α = 0.1

−2 0 2

w>αx

0.00

0.25

0.50

0.75

α = 1

−10 0 10

w>αx

0.00

0.05

0.10

0.15

α = 10

Theory C1 Theory C2 Simulation C1 Simulation C2

Figure 1: Distribution of the decision function w⊤
αx for different values of α (per column) and β (per row)

for a data model given by: µβ = βµ+
√

1 − β2µ⊥. Here we have N = 5000, n = 200, p = 400, ∥µ∥ = 1.5,

∥µ⊥∥ = 1, γ = γ̃ = 1. The theoretical Gaussian distributions are predicted as per Theorem 4.2.

Therefore, thanks to Proposition 4.3, we now have the exact formula of the theoretical test accuracy

of our classifier wα, which can be used to simulate the dynamics of the test accuracy with respect to

the parameters of the setting (like α, β and γ, as it was done in Figure 2), and also to characterize the

expression of the optimal and worst parameters of the model (for instance, the α parameter) to use for the

fine-tuning process. In particular, we will derive the theoretical expressions of the extrema of α that lead

to the best and the worst test accuracies on the target task (proof in Appendix B).

Theorem 4.4 (Optimal α). Maximizing the term
(

(να −m2
α)−

1
2mα

)
in terms of α leads to optimum

test accuracy Atest, and gives a unique maximizer α⋆ given by:

α⋆ =
λRT2∥µβ∥2 − 2βγT1(1 + δQ)∥µ∥2
βγT2(1 + δQ)∥µ∥2 − 2λRT3∥µβ∥2

Plus, solving (να −m2
α)−

1
2mα = 0 leads to the unique minimizer ᾱ of Atest, which is given by:

ᾱ = − λR∥µβ∥2
βγ(1 + δQ)∥µ∥2

14

4 Main Theoretical Results

−10 0 10
α

0.50

0.52

0.54

0.56

T
es

t
A

cc
u

ra
cy

α∗ = 1.64

ᾱ = −1.41

β = 0.2

−10 0 10
α

0.50

0.55

0.60

α∗ = 4.13

ᾱ = −0.56

β = 0.5

−10 0 10
α

0.5

0.6

0.7

α∗ = 7.53

ᾱ = −0.31

β = 0.9

α-FTC No-FT (α = 0) Optimal α∗ α = 1

Figure 2: Theoretical Test Accuracy variation with α for N = 5000, n = 40, p = 1000, and the theoretical

model is modified to take β in (0, 1): µβ = βµ +
√

1 − β2µ⊥, where ∥µ∥ = ∥µ⊥∥ = 0.8. Finally the

regularization parameters are: γ̃ = 2 and γ = 10−1.

0.0 0.2 0.4 0.6 0.8 1.0
β

0

1

2

3

4

5
O

p
ti

m
al
α
∗

η = 0.01

η = 0.1

η = 1.0

η = 10.0

Figure 3: Variations of the optimal parameter α⋆ with

respect to the alignment between the source µ and

target µβ dataset means. These latter were chosen of

norm 1, N = 2000, n = 200 and γ = γ̃ = 1.

Theorem 4.4 gives us the exact expression of the

optimal scaling parameter α∗, which we can exam-

ine its dynamics with respect to the other parame-

ters of the considered model. For instance, Figure

3 clearly depicts the non-trivial contribution of the

dimension p to the choice of α. It is clear that α⋆

is non-decreasing with the alignment β between the

source and target tasks, but its effect gets amplified

with the dimension p of the problem. Notably, the

influence of α is more pronounced in low-resource

settings (p ≫ n) compared to cases where sufficient

fine-tuning data is available. This further under-

scores the crucial role of α in effectively leveraging

the pre-trained model and source data. Additionally, as β → 0, we also remark that α⋆ → 0, which means

that fine-tuning has no added value when the source and target tasks are unrelated and orthogonal.

Additionally, Figure 2 shows the evolution of the theoretical test accuracy with the parameter α for different

source datasets (i.e, different alignments β). In particular, we observe the existence of an optimal parameter

α⋆ that is generally different from 1 (standard approach), and as can be previously anticipated, its impact

on the test accuracy is more visible in the case of a higher alignment factor β, which means in this case

that we highly leverage the base model to better generalize on the new task (see Remark 3.2).

4.3 Theoretical performance with arbitrary source classifier

We can also extend our previous results in the case of an arbitrary source classifier w̃ (instead of Ridge),

which gives us an analysis of our method in the case where we don’t have access to the pre-training data. In

fact, we assume here that we don’t know the distribution of the source data, and thus the alignment term

15

4 Main Theoretical Results

β will be defined differently, and in this case, it is given by the dot product between the source classifier

weights w̃ and the target data mean µβ, i.e β = ⟨w̃,µβ⟩. We will show in the following that we get the

same observations and insights as of the previous section.

Under the same assumptions 4.1, we state our main theorem of this section which also describes the

asymptotic distribution of the fine-tuned classifier in this setting.

Theorem 4.5 (Gaussianity of the fine-tuned model for an arbitrary w̃). Let wα be the fine-tuned classifier

as defined in (α-FTC) and suppose that Assumption 4.1 holds. The decision function w⊤
αx, on some test

sample x ∈ Ca independent of X, satisfies:

w⊤
αx

D−→ N
(
(−1)amα, να −m2

α

)
,

where:

mα =
∥µβ∥2 + αγ(1 + δQ)⟨w̃,µβ⟩

∥µβ∥2 + 1 + γ(1 + δQ)
,

να = T1 + αT2 + α2T3.

with:

T1 =
∥µβ∥2
hλQ

(∥µβ∥2 + 1

λQ
− 2(1 − h)

)
+

1 − h

h
,

T2 =
2γ(1 + δQ)⟨w̃,µβ⟩

hλQ

(∥µβ∥2 + 1

λ
− (1 − h)

)
,

T3 =
γ2(1 + δQ)2

h

(
⟨w̃,µβ⟩2

λ2
Q

+
1 − h

η
∥w̃∥2 +

(1 − h)⟨w̃,µβ⟩2
ηλQ

(∥µβ∥2
λQ

− 2

))
.

The new alignment term β quantifies how well is the source classifier performing on the target domain,

in the sense that larger values of |⟨w̃,µβ⟩| essentially mean that w̃ can better classifies the target data,

which justifies the choice of this metric as an alignment measurement. By examining the contribution of

this term in the expression of mα and να in Theorem 4.5 and by looking at the dynamics of α∗ (which will

be defined later) with respect to it as in Figure 4, we observe that this new alignment term operates in the

same way as the previous β defined in the case of a known source data distribution.

Again, thanks to Proposition 4.3, we have the theoretical formula of the test accuracy of this new fine-tuned

classifier wα, which we can use to compute the optimal parameter α∗ that maximizes the test accuracy,

which is the object of the following theorem 4.6.

Theorem 4.6 (Optimal α for arbitrary w̃). Maximizing the term
(

(να −m2
α)−

1
2mα

)
with respect

to α leads to optimal test accuracy Atest and gives a unique maximizer α∗ given by:

α∗ =
η(1 + γ(1 + δQ))⟨w̃,µβ⟩

γ(1 + δQ) (λ∥µβ∥2∥w̃∥2 − (λ− η)⟨w̃,µβ⟩2)

Solving mα = 0 leads to the unique minimizer ᾱ of Atest which is given by:

ᾱ =
−∥µβ∥2

γ(1 + δQ)⟨w̃,µβ⟩

16

5 Experiments

0.0 0.2 0.4 0.6 0.8 1.0

|w̃>µβ|

0.0

0.5

1.0

1.5

2.0

O
p

ti
m

al
α
∗

η = 0.01

η = 0.1

η = 1.0

η = 10.0

Figure 4: Variations of the optimal parameter α∗ with

respect to the alignment between the source classifier

w̃ and the target dataset mean µβ. These latter were

chosen of norm 1, n = 200 and γ = 1.

Similarly, for the arbitrary classifier w̃, we ob-

serve the same scaling behavior of the optimal pa-

rameter α∗ with respect to the alignment term. No-

tably, the influence of α is more pronounced in low-

resource settings (p ≫ n) compared to cases where

sufficient fine-tuning data is available. This further

underscores the crucial role of α in effectively lever-

aging the pre-trained model and source data.

Therefore, we have shown in this whole section that

adding a scaling parameter to the base model helps

better leverage the source task in Transfer Learn-

ing, though needs to be carefully chosen.

4.4 Conclusion of our theory

The theoretical framework developed in this section provides precise predictions on how the scaling param-

eter α influences generalization in transfer learning. In particular, the Random Matrix Theory analysis

reveals a non-trivial optimal α∗ that depends on alignment between source and target tasks and the di-

mensional regime. To verify whether these analytical insights hold in practice, we now turn to empirical

validation. In the next section, we test our predictions on both controlled linear models and complex

real-world fine-tuning scenarios such as Large Language Models (LLMs).

5 Experiments

In this section, we present some experiments on real datasets to validate our approach and prove the

effectiveness of scaling the base model. We start by fine-tuning linear models on the Amazon Review

dataset (Blitzer et al., 2007) to verify our theoretical findings. After that, we formalize our new class of

reparameterization methods and verify its efficiency by experiments on fine-tuning LLMs on the GLUE

benchmark (Wang et al., 2018).

5.1 Within our theoretical model: Linear Binary Classification

Here we present our experiments on the Amazon Review dataset (Blitzer et al., 2007) to validate our theory.

This dataset includes several binary classification tasks corresponding to positive versus negative reviews

of books, dvd, electronics, and kitchen. We apply the standard scaler from scikit-learn (Pedregosa

et al., 2011) and estimate ∥µ∥, ∥µ⊥∥ and β with the normalized data. Figure 5 depicts the variation in test

accuracy of three transfer tasks with respect to the parameter α and gives a comparison between the three

main schemes: α = 0 (i.e., learning directly on the target data without using previous source knowledge),

α = 1 (classical approach) and with the optimal α⋆ obtained using the theoretical formula in Theorem 4.4.

Depending on the tasks, we see a clear improvement in the test accuracy for α⋆ compared to the other

17

5 Experiments

−2.5 0.0 2.5
α

0.6

0.7

T
es

t
A

cc
u

ra
cy

Dvd To Book

−2.5 0.0 2.5
α

0.6

0.7

0.8
Book To Kitchen

−2.5 0.0 2.5
α

0.6

0.8

Kitchen To Elec

α-FTC No-FT (α = 0) Optimal α∗ α = 1

Figure 5: Test accuracy variation with α for different transfer learning schemes from the Amazon Review

dataset (Blitzer et al., 2007). The considered parameters here are: N = 2000, n = 40, p = 400, γ = 10−1

and γ̃ = 2.

schemes, which further highlights the impact of this scaling parameter. Table 1 summarizes the results

obtained for all the possible transfer tasks between the sub-datasets.

Table 1: Test accuracy (in %) comparison over Amazon review datasets (Blitzer et al., 2007) for N = 2000,

n = 40, p = 400, and optimal regularization parameters γ = γ̃ = 1. As theoretically anticipated, our

new fine-tuning approach yields better classification accuracy than training directly on the target dataset

(α = 0) or using α = 1. The results were computed for 3 random seeds.

Source Dataset Target Dataset α = 0 α = 1 Optimal α⋆

Books Dvd (β = 0.8) 64.12 ± 0.03 75.67 ± 0.24 77.35 ± 0.14 (α⋆ = 2.47)

Electronics (β = 0.71) 68.61 ± 0.74 76.65 ± 0.02 77.12 ± 0.17 (α⋆ = 1.68)

Kitchen (β = 0.79) 69.24 ± 0.95 78.19 ± 0.05 78.96 ± 0.26 (α⋆ = 1.9)

Dvd Books (β = 0.78) 63.43 ± 0.67 75.22 ± 0.24 77.59 ± 0.07 (α⋆ = 2.47)

Electronics (β = 0.71) 68.61 ± 0.74 76.72 ± 0.17 76.88 ±0.42 (α⋆ = 1.69)

Kitchen (β = 0.78) 69.24 ± 0.95 78.11 ± 0.23 78.72 ± 0.54 (α⋆ = 1.88)

Electronics Books (β = 0.51) 63.43 ± 0.67 72.2 ± 0.1 73.29 ± 0.13 (α⋆ = 1.67)

Dvd (β = 0.52) 64.12 ± 0.03 72.41 ± 0.16 73.48 ± 0.17 (α⋆ = 1.69)

Kitchen (β = 0.9) 69.24 ± 0.95 81.58 ± 0.15 83.02 ± 0.1 (α⋆ = 2.29)

Kitchen Books (β = 0.52) 63.43 ± 0.67 72.86 ± 0.1 74.27 ± 0.14 (α⋆ = 1.84)

Dvd (β = 0.53) 64.12 ± 0.03 73.15 ± 0.08 74.15 ± 0.09 (α⋆ = 1.82)

Electronics (β = 0.83) 68.61 ± 0.74 80.14 ± 0.02 81.89 ± 0.18 (α⋆ = 2.31)

We note that our approach yields optimal results for all transfer tasks, which clearly validates our

theoretical results and underscores the efficiency of our method in terms of its generalization capabilities.

This can also be observed in Figure 5, which shows that the optimal test accuracy is obtained for a

parameter α that is not necessarily equal to 1.

18

5 Experiments

0 10000 20000 30000 40000 50000 60000
Step

80

82

84

86

T
es

t
A

cc
u

ra
cy

MNLI benchmark

α-LoRA

LoRA

0 250 500 750 1000 1250 1500
Step

50

60

70

RTE benchmark

α-LoRA

LoRA

Figure 6: Test accuracy evolution of roberta-base finetuned on MNLI and RTE for a single fixed seed

(seed 5 for MNLI and seed 123 for RTE).

5.2 Beyond our theoretical model: Supervised Fine-tuning for LLMs

To go beyond linear models, we now fine-tune language models, specifically the roberta-base BERT model

(Liu et al., 2019)), on downstream classification tasks taken from GLUE tasks (Wang et al., 2018). To

adapt our theoretical insights from the linear model to complex multi-layered architectures like LLMs, we

generalize the scalar scaling parameter α to a vector α, i.e applying a scaling parameter to each output

dimension of the target module. This extension provides finer-grained control, allowing the model to rescale

the contribution of the frozen base weights on a per-output-neuron basis. This added flexibility is crucial

for capturing the intricate functional specialization within different dimensions of a neural network’s hidden

states. Consequently, the update rule for a weight matrix W⋆ is modified from a simple scalar product to

a row-wise scaling operation, as detailed below:

Wnew = α⊙W⋆ + W (10)

where ⊙ is the element-wise product between vectors, W⋆ ∈ Rdout×din is the original layer weights (frozen

during training), α ∈ Rdout (each element in the output dimension is then multiplied by a scalar), and

W ∈ Rdout×din is the trainable weight matrix. This generalization from a scalar α to a vector is adequate

with our theoretical study in the previous section since the weight matrix W∗ is comprised of dout vectors

(rows), and thus a scalar α is applied to each row. Additionally, to further make our fine-tuning method

lightweight, W can be approximated with a low-rank matrix: W = AB, where: A ∈ Rdout×r and

B ∈ Rr×din , a method that we call α-LoRA. We then report in Table 2 the test performance obtained

using standard LoRA and our α-LoRA method evaluated on six GLUE tasks: MNLI, QNLI, MRPC, RTE,

SST-2, and QQP.

We note that from Table 2 and Figure 6, our method leads to higher generalization performance

compared to standard LoRA across all GLUE benchmarks, which further validates our theoretical findings

of the previous section, and proves the usefulness of scaling the base model weights.

19

5 Experiments

Table 2: Test accuracy comparison over GLUE classification tasks (Wang et al., 2018) using roberta-base

model. As theoretically anticipated, our new fine-tuning approach yields better test classification accuracy

than the standard LoRA method (α = 1). Details about these experiments are presented in Appendix F.

Method MNLI QNLI MRPC RTE SST-2 QQP

LoRA 85.77 ± 0.16 91.95 ± 0.03 88.40 ± 0.31 74.01 ± 1.64 94.00 ± 0.11 88.80 ± 0.02

α-LoRA 86.12 ± 0.06 92.20 ± 0.13 89.46 ± 0.53 77.62 ± 0.59 94.38 ± 0.01 88.86 ± 0.03

Finding the parameters α. We designed a practical heuristic algorithm to automatically update α

during training. In fact, we consider each vector α as a trainable parameter and update these vectors once

every T step (tunable hyperparameter) by sampling a new batch, different from the one used to train the

reparametrization weights W, and then taking a gradient step over this new batch with either Adam or

AdamW. The full pseudo-code of our algorithm is given by the following.

Algorithm 1 α-LoRA Fine-Tuning

Require: Base model weights {W∗
i }Ni=1, fine-tuning dataset D = {Bj}bj=1 divided into batches, update

period T , optimizers optim (for LoRA modules) and optim alpha (for α = {αi}Ni=1), number of epochs

n.

1: for k = 1 . . . n do

2: for batch Bj in D do

3: Update LoRA modules {(Ai, Bi)}Ni=1 with a gradient step on B using optim.

4: if j mod T = 0 then

5: Sample a fresh batch Bα from D

6: Update α with a gradient step on Bα using optim alpha.

7: end if

8: end for

9: end for

The design choices of our algorithm can be justified by the following:

• Because the vectors α applied to each module lie in the whole Euclidean space Rd, it is not possible

to find such a parameter through a simple grid search, as this will give a very costly and impractical

algorithm.

• Additionally, finding theoretical formulas for each vector α is very hard, if not impossible. Therefore,

it is crucial to have an algorithm that updates the vectors α automatically.

• Finally, because we want to optimize the generalization performance of our fine-tuning method,

training α in the same way as the reparametrization weights W can easily lead to overfitting of the

model, which justifies sampling of new batches to update α and the update rate T . Our specific

choices are detailed for reproducibility in Appendix F.

20

5 Experiments

−2 −1 0 1 2
t

50

60

70

T
es

t
A

cc
u

ra
cy

(%
)

α(t) = α∗ + t

−2 −1 0 1 2
t

50

60

70

α(t) = t× α∗

−1.6 −0.8 0.0 0.8 1.6
b

0.0

0.4

0.8

1.2

1.6

2.0

a

77.62 %

α(a, b) = a× α∗ + b

50

60

70

T
es

t
A

cc
u

ra
cy

(%
)

Figure 7: Test accuracy of roberta-base finetuned on RTE for different values of α in the neighborhood

of the obtained α⋆. The values of the parameters α⋆ in this experiment range between 0.85 and 1.14.

Figure 7 shows that our algorithm leads to optimal scaling vectors α⋆ in their neighborhood, which proves

the effectiveness of our algorithm and the fine-tuning method in general. The pseudo-code 1 of our algorithm

is detailed in the Appendix F.

Overhead induced by the additional parameters α. We note that the number of additional train-

able parameters α induced by our algorithm 1 is negligible compared to the standard approach (fixed

α = 1), for example in the case of our experiments with roberta-base model, the increase in the number

of trainable parameters is only of 0.02%. Additionally, investigating the resulting values of these learned

α vectors as reported in Figures 8, 10 and 11, we notice that we get similar values for query and value

matrices, thus we can use a shared parameter for both weight matrices (or for the whole attention module

more generally), reducing the overhead even further.

qu
er

y_
1

va
lu

e_
1

qu
er

y_
2

va
lu

e_
2

qu
er

y_
3

va
lu

e_
3

qu
er

y_
4

va
lu

e_
4

qu
er

y_
5

va
lu

e_
5

qu
er

y_
6

va
lu

e_
6

qu
er

y_
7

va
lu

e_
7

qu
er

y_
8

va
lu

e_
8

qu
er

y_
9

va
lu

e_
9

qu
er

y_
10

va
lu

e_
10

qu
er

y_
11

va
lu

e_
11

qu
er

y_
12

va
lu

e_
12

qu
er

y_
13

va
lu

e_
13

qu
er

y_
14

va
lu

e_
14

qu
er

y_
15

va
lu

e_
15

qu
er

y_
16

va
lu

e_
16

qu
er

y_
17

va
lu

e_
17

qu
er

y_
18

va
lu

e_
18

qu
er

y_
19

va
lu

e_
19

qu
er

y_
20

va
lu

e_
20

qu
er

y_
21

va
lu

e_
21

qu
er

y_
22

va
lu

e_
22

qu
er

y_
23

va
lu

e_
23

qu
er

y_
24

va
lu

e_
24

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Al
ph

a
st

at
ist

ics
 (p

er
 7

68
-d

im
 c

hu
nk

)

Alpha statistics across query/value layers
25 75 percentile
Mean ± Std

Figure 8: Statistics of the vectors α for the MNLI benchmark

21

6 Multi-source Transfer Learning

6 Multi-source Transfer Learning

Building on the single-source formulation, we extend our theoretical framework to multi-source transfer

settings, where multiple pre-trained models contribute to a single target task. This setting is increasingly

relevant with the rise of mixture-of-experts and multi-domain pretraining.

6.1 Asymptotic distribution of the test

In this section, we present an extension of our theoretical work of section 4 to the case of Transfer Learning

using multiple source classifiers. Given T source classifiers {wt}Tt=1 and a single target task, the goal is

to fine-tune a mixture of these classifiers on the target task. Specifically, we want to find the optimal

fine-tuned classifier wΩ that is written as:

wΩ =

T∑
t=1

αtwt + a

where αt ∈ R and a is an adapter trained on the target dataset as follows:

a = arg minv

1

n
∥X⊤(

T∑
t=1

αtwt + v) − y∥2 + γ∥v∥2

Then, a expresses as:

a =
1

n

(
1

n
XX⊤ + γIp

)−1
(
Xy −XX⊤

T∑
t=1

αtwt

)
Thus, our new fine-tuned classifier writes as:

wΩ =
T∑
t=1

αtwt + a =
1

n
QXy + γ

T∑
t=1

αtQwt (11)

Using the same RMT tools, we establish the asymptotic distribution of the decision function of the classifier

mΩ for an arbitrary test sample x ∼ N ((−1)aµβ, Ip) in the following theorem.

Theorem 6.1 (Test performance for multi-source transfer learning). Let wΩ be the multi-source fine-tuned

classifier as defined in (D) and suppose Assumption 4.1 hold. The decision function w⊤
Ωx on some test

sample x ∈ Ca independent of X for arbitrary source classifiers w1, . . . ,wT , satisfies:

w⊤
Ωx

D−→ N
(
(−1)amΩ, νΩ −m2

Ω

)
,

where:

mΩ =
∥µβ∥2 + γ(1 + δQ)

∑T
t=1 αt⟨wt,µβ⟩

∥µβ∥2 + 1 + γ(1 + δQ)
,

νΩ = T1 + T2 + T3.

with:

T1 =
∥µβ∥2
hλQ

(∥µβ∥2 + 1

λQ
− 2(1 − h)

)
+

1 − h

h

22

6 Multi-source Transfer Learning

T2 =
2γ(1 + δQ)

hλQ

T∑
t=1

αt

(∥µβ∥2 + 1

λQ
− (1 − h)

)
⟨wt,µβ⟩

T3 =
γ2(1 + δQ)2

h
×

T∑
t,k=1

αtαk

[
⟨wt,µβ⟩⟨wk,µβ⟩

λ2
Q

+
1

(1 + γ(1 + δQ))2

(
⟨wt,wk⟩ +

⟨wt,µβ⟩⟨wk,µβ⟩
λQ

(
∥µβ∥2
λQ

− 2)

)]

Theorem 6.1 gives the distribution of the fine-tuned classifier obtained through a mixture of many source

models. This latter will be very useful to characterize the optimal scaling factors that can be used to

maximize the transfer generalization capabilities.

6.2 Characterization of the optimal scaling factors

We now use Proposition 4.3 to characterize the extrema scaling factors {αt}Tt=1, but beforehand, let us

write the first and second order moments mΩ and νΩ in vectorized forms in order for a better readability

of the results.

Denote by α = (αt)
T
t=1 ∈ RT and the matrix of source classifiers: W = (w1, . . . ,wT) ∈ Rp×T . Then, the

quantities mΩ, T2 and T3 write as:

mΩ =

(
∥µβ∥2 + γ(1 + δQ)α⊤W⊤µβ

)
∥µβ∥2 + 1 + γ(1 + δQ)

(12)

T2 =
2γ(1 + δQ)

hλQ

(∥µβ∥2 + 1

λQ
− (1 − h)

)
α⊤W⊤µβ (13)

T3 =
γ2(1 + δQ)2

h
α⊤Mα (14)

Worst scaling factors. Finding the worst scaling factors (that lead to a test accuracy of 50%) boils

down to solving the equation mΩ = 0, which in turn leads to the following condition:

ᾱ⊤W⊤µβ = − ∥µβ∥2
γ(1 + δQ)

(15)

which also means that:
T∑
t=1

ᾱtwt +
µβ

γ(1 + δQ)
⊥ µβ

Best scaling factors. The theoretical test accuracy writes as follows:

Atest(α) = φ

(
a1 + α⊤v1√

a2 + α⊤v2 + α⊤M̃α

)
where:

a1 =
∥µβ∥2
λQ

, v1 =
γ(1 + δQ)

λQ
W⊤µβ, a2 = T1 − a21 =

∥µβ∥2
λQ

(∥µβ∥2 + 1

hλQ
− ∥µβ∥2

λQ
− 2(1 − h)

h

)
+

1 − h

h

v2 =
(1 + δQ)

λQ

(∥µβ∥2 + 1

hλQ
− 2γ∥µβ∥2

λQ
− 1 − h

h

)
W⊤µβ,

23

7 The case of regression: fine-tuning a weight matrix

M̃ =
γ2(1 + δQ)2(1 − h)

h

(
1

η
W⊤W +

(
1

λ2
Q

+
1

ηλQ

(∥µβ∥2
λQ

− 2

))
W⊤µβµ

⊤
βW

⊤

)
And therefore, since φ is non-decreasing, maximizing this test accuracy boils down to maximizing the term

inside it, i.e we want to find α∗ that satisfies:

α∗ ∈ arg maxα

a1 + α⊤v1√
a2 + α⊤v2 + α⊤M̃α

= arg maxα g(α)

We compute the gradient of g with respect to α to find the extremum values of these mixing parameters:

∇αg(α) =

√
a2 + α⊤v2 + αM̃α v1 − (a1 + α⊤v1)

v2+2M̃α√
a2+α⊤v2+α⊤M̃α

a2 + α⊤v2 + α⊤M̃α

Thus the roots α of ∇g(α) satisfy the following equation:

(a2 + α⊤v2 + α⊤M̃α)v1 − (a1 + α⊤v1)(v2 + 2M̃α) = 0

We summarize these findings in the following theorem:

Theorem 6.2 (Optimal α for the mixture of source classifiers). Under Assumptions 4.1, the optimal

scaling factors α = (α1, . . . , αT)T satisfy the following identity:

(a2 + α⊤v2 + α⊤M̃α)v1 − (a1 + α⊤v1)(v2 + 2M̃α) = 0

Whereas the worst coefficients satisfy:

α⊤W⊤µβ = − ∥µβ∥2
γ(1 + δQ)

We next show that similar principles hold in continuous-output settings such as regression, suggesting

that α-scaling reflects a general statistical phenomenon rather than a classification-specific artifact.

7 The case of regression: fine-tuning a weight matrix

Let consider now analyzing a linear regression task where the finetuning process is done using an adapter

matrix (instead of vector), which is described by the following setting.

Source task. Assume we are given a source regression dataset {(x̃i, ỹi)}Ni=1 such that there exists Ws ∈
Rd×p:

x̃i ∼ N (0, Ip), ỹi = Wsx̃i + z̃i ∈ Rd, where: z̃i ∼ N (0, σ̃2Id) (16)

Target task. Now we want to learn a target task characterized by a matrix Wt. In fact, we consider

having a target dataset {(xi,yi)}ni=1 defined as:

xi ∼ N (0, Ip), yi = Wtxi + zi ∈ Rd, where: zi ∼ N (0, σ2Id) (17)

24

7 The case of regression: fine-tuning a weight matrix

Again we denote by: X = [x1, . . . ,xn] ∈ Rp×n and Y = [y1, . . . ,yn] ∈ Rd×n. We want to learn such

target task by considering weights of the form: αWs + A such that A is learned from the target data by

minimizing the following loss function:

min
V

L (V;X,Y) = min
V

1

n

n∑
i=1

∥(αWs + V)xi − yi∥22 + γ∥V∥2F (18)

Where ∥.∥F denotes the Frobenius norm of a matrix. The gradient of the loss function with respect to V

is given by:

∇L (V) =
2

n

n∑
i=1

((αWs + V)xi − yi)x
⊤
i + 2γV =

2

n
(αWs + V)XX⊤ − 2

n
YX⊤ + 2γV

Thus, the minimizer A of the loss function L (V) is given by:

A =
1

n
YX⊤Q− α

n
WsXX⊤Q (19)

where:

Q =

(
1

n
XX⊤ + γIp

)−1

(20)

Finally, the fine-tuned regressor is given by:

Wα = αWs + A =
1

n
YX⊤Q + αγWsQ (21)

To evaluate the efficiency of this fine-tuning process and showcase the impact of the parameter α, we can

compute the theoretical test error of this regressor defined as follows:

Etest = E
[
∥Wαx− y∥2

]
(22)

for test samples (x,y) independent of the training set. Denote by:

λ = 1 + γ(1 + δ)

The following theorem gives the theoretical expression of the test error of the fine-tuned regressor Wα.

Theorem 7.1 (Theoretical test error.). Under the high-dimensional regime, i.e p
n → η ∈ [0,+∞),

the theoretical test error of the fine-tuned regressor Wα defined in (22) is given by:

Etest = T1 + αT2 + α2T3,

where:

T1 =
(λ− 1)2

λ2 − η
Tr(WtW

⊤
t) +

σ2.d.λ2

λ2 − η

T2 =
2γ(1 + δ)(1 − λ)

λ2 − η
Tr(WtW

⊤
s)

T3 =
(γ(1 + δ))2

λ2 − η
Tr(WsW

⊤
s)

25

7 The case of regression: fine-tuning a weight matrix

−4 −2 0 2 4
α

0

1

2

T
es

t
R

is
k

×104

α∗ = −2.0

β = −2

Theory

Simulation

Optimal α∗

−4 −2 0 2 4
α

0.5

1.0

1.5

×104

α∗ = 0.5

β = 0.5

−4 −2 0 2 4
α

0

1

2

×104

α∗ = 2.0

β = 2

Figure 9: Test risk variation with α for a transfer learning setting starting from a fixed (random) source

regressor Ws to a target task of the form: Wt = βWs+W⊥
s . The considered parameters here are: n = 20,

p = 200, d = 4, γ = 10−2 and σ = 0.5.

The proof of this theorem is presented in Appendix E. In particular, we can easily derive the optimal

α to use in the fine-tuning process which we present in the following theorem.

Theorem 7.2 (Optimal regression α∗.). Under the same assumptions of the previous theorem, the

optimal α∗ that minimizes the theoretical test error Etest of the fine-tuned regressor is given by:

α∗ =
Tr(WtW

⊤
s)

Tr(WsW⊤
s)

Again, the proof of this theorem is provided in Appendix E. We remark here for instance that the

optimal parameter α∗ does not depend on the dimensionality of the problem, nor on the number of

fine-tuning samples n, which is an interesting and unexpected property that was not observed in the

previously studied classification setting. Additionally, α∗ can also be interpreted as a normalized alignment

score between the source and target tasks. In fact, we know that the Frobenius dot product between two

matrices A and B is given by: ⟨A,B⟩ = Tr(AB⊤), hence: α∗ = ⟨Wt,Ws⟩
∥Ws∥2 . Therefore the optimal fine-

tuning parameter α to choose is exactly the alignment score between the source and target tasks as defined

earlier in (6) This is further shown in Figure 9.

Estimating α∗. From our derivations in Appendix E, we can derive a consistent estimator of α∗. In

fact, for any source samples (x̃1, ỹ1) and (x̃2, ỹ2), and target samples (x,y), we have that:

E[ỹ⊤
1 yx

⊤x̃1] = Tr(WtW
⊤
s), E[ỹ⊤

1 ỹ2x̃
⊤
2 x̃1] = Tr(WsW

⊤
s)

Therefore:

α∗ =
E[ỹ⊤

1 yx
⊤x̃1]

E[ỹ⊤
1 ỹ2x̃⊤

2 x̃1]
(23)

And therefore, we can deploy Monte Carlo methods to estimate these two expectations.

26

7 The case of regression: fine-tuning a weight matrix

Conceptual reflection. This work reframes fine-tuning as a problem of balancing knowledge transfer

rather than merely parameter adaptation. By introducing a scaling parameter that explicitly governs

the contribution of pre-trained representations, we provide a theoretical and algorithmic mechanism to

control how prior knowledge is reused. This interpretation connects transfer learning to broader principles

in optimization and statistical physics, where equilibrium between old and new information determines

generalization.

27

8 Discussion and Conclusion

8 Discussion and Conclusion

In this thesis, we introduced a new theoretical and algorithmic framework for fine-tuning pre-trained

models through an additional scaling degree of freedom. By reparameterizing the adaptation process with

a learnable scaling parameter, we demonstrated—both analytically and empirically—that fine-tuning can

achieve superior generalization compared to standard low-rank approaches such as LoRA.

Our Random Matrix Theory analysis revealed the existence of an optimal scaling factor that minimizes

generalization error in high-dimensional transfer settings. Interestingly, this optimal value is often distinct

from the conventional scaling (α = 1) used in prior work, providing a rigorous theoretical justification

for adaptive rescaling during fine-tuning. The theory not only yields interpretable expressions linking α

to alignment between source and target tasks but also extends naturally to multi-source and regression

frameworks.

Empirically, our proposed α-LoRA method consistently improves performance on benchmark trans-

fer tasks and LLM fine-tuning experiments, supporting the theoretical predictions. This dual valida-

tion—mathematical and empirical—underscores the relevance of RMT-based analysis for guiding fine-

tuning design.

Nevertheless, our study also highlights several limitations. The theoretical results rely on simplifying

assumptions such as Gaussian data distributions and linearized architectures, which do not capture the

full complexity of modern deep networks. Future work could aim to: (i) relax these assumptions to handle

more realistic data and architectures, (ii) develop efficient estimators for α in large-scale scenarios, and (iii)

explore synergistic combinations of α-scaling with other advanced adapter techniques (e.g., DoRA, MoRA,

or LoRA+). Beyond methodological extensions, an intriguing avenue is the use of some theoretical tools

(in addition to RMT) tools to predict fine-tuning dynamics or to design other adaptive algorithms that

automatically adjust α during training.

In summary, this work takes a first step toward a principled, theoretically grounded understanding of

fine-tuning, bridging Random Matrix Theory and practical transfer learning. We hope it inspires future

research into interpretable and mathematically guided adaptation mechanisms for large-scale learning

systems.

28

References

References

Shai Ben-David, John Blitzer, Koby Crammer, Fernando Pereira, et al. A theory of learning from different

domains. In Machine Learning, volume 79, pp. 151–175. Springer, 2010.

John Blitzer, Mark Dredze, and Fernando Pereira. Biographies, bollywood, boom-boxes and blenders: Do-

main adaptation for sentiment classification. In Proceedings of the 45th annual meeting of the association

of computational linguistics, pp. 440–447, 2007.

T Tony Cai and Hongji Wei. Transfer learning for nonparametric classification. The Annals of Statistics,

49(1):100–128, 2021.

Yatin Dandi, Ludovic Stephan, Florent Krzakala, Bruno Loureiro, and Lenka Zdeborová. Universality laws

for gaussian mixtures in generalized linear models. Advances in Neural Information Processing Systems,

36, 2024.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of

quantized llms. Advances in neural information processing systems, 36:10088–10115, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-

terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth

16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Aymane El Firdoussi and Mohamed El Amine Seddik. High-dimensional learning with noisy labels. arXiv

preprint arXiv:2405.14088, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-

Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models.

arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,

Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement

learning. arXiv preprint arXiv:2501.12948, 2025.

Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff pruning.

arXiv preprint arXiv:2012.07463, 2020.

Walid Hachem, Philippe Loubaton, and Jamal Najim. Deterministic equivalents for certain functionals of

large random matrices. 2007.

Steve Hanneke and Samory Kpotufe. A more unified theory of transfer learning. arXiv preprint

arXiv:2408.16189, 2024.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. The impact of initialization on lora finetuning dynamics.

Advances in Neural Information Processing Systems, 37:117015–117040, 2024a.

29

References

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models. arXiv

preprint arXiv:2402.12354, 2024b.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Plop: Precise lora placement for efficient finetuning of large

models. arXiv preprint arXiv:2506.20629, 2025.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a unified

view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Ges-

mundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp. In International

conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu

Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Wenlong Ji, Weizhe Yuan, Emily Getzen, Kyunghyun Cho, Michael I Jordan, Song Mei, Jason E Weston,

Weijie J Su, Jing Xu, and Linjun Zhang. An overview of large language models for statisticians. arXiv

preprint arXiv:2502.17814, 2025.

Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei Deng, Feng

Sun, Qi Zhang, Deqing Wang, and otxhers. Mora: High-rank updating for parameter-efficient fine-tuning.

arXiv preprint arXiv:2405.12130, 2024.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank hyper-

complex adapter layers. In Advances in Neural Information Processing Systems (NeurIPS), volume 34,

pp. 1022–1035, 2021.

Minsoo Kim, Sihwa Lee, Wonyong Sung, and Jungwook Choi. Ra-lora: Rank-adaptive parameter-efficient

fine-tuning for accurate 2-bit quantized large language models. In Findings of the Association for Com-

putational Linguistics ACL 2024, pp. 15773–15786, 2024.

Adam Klivans, Konstantinos Stavropoulos, and Arsen Vasilyan. Testable learning with distribution shift.

In The Thirty Seventh Annual Conference on Learning Theory, pp. 2887–2943. PMLR, 2024.

Dawid J Kopiczko, Tijmen Blankevoort, and Yuki M Asano. Vera: Vector-based random matrix adaptation.

arXiv preprint arXiv:2310.11454, 2023.

Samory Kpotufe and Guillaume Martinet. Marginal singularity and the benefits of labels in covariate-shift.

The Annals of Statistics, 49(6):3299–3323, 2021.

Baohao Liao, Yan Meng, and Christof Monz. Parameter-efficient fine-tuning without introducing new

latency. arXiv preprint arXiv:2305.16742, 2023.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting

Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first International

Conference on Machine Learning, 2024.

30

References

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,

Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining approach.

CoRR, abs/1907.11692, 2019. URL http://arxiv.org/abs/1907.11692.

Cosme Louart and Romain Couillet. Concentration of measure and large random matrices with an appli-

cation to sample covariance matrices. arXiv preprint arXiv:1805.08295, 2018.

Haodong Lu, Chongyang Zhao, Jason Xue, Lina Yao, Kristen Moore, and Dong Gong. Adaptive rank,

reduced forgetting: Knowledge retention in continual learning vision-language models with dynamic

rank-selective lora. arXiv preprint arXiv:2412.01004, 2024.

Xiaoyi Mai and Zhenyu Liao. The breakdown of gaussian universality in classification of high-dimensional

mixtures. arXiv preprint arXiv:2410.05609, 2024.

Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. The benefit of multitask repre-

sentation learning. Journal of Machine Learning Research, 17(81):1–32, 2016.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,

Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions

with human feedback. Advances in neural information processing systems, 35:27730–27744, 2022.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge and

data engineering, 22(10):1345–1359, 2009.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,

Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning

in python. the Journal of machine Learning research, 12:2825–2830, 2011.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapterfusion:

Non-destructive task composition for transfer learning. In European Chapter of the Association for

Computational Linguistics (EACL), 2020.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn.

Direct preference optimization: Your language model is secretly a reward model. Advances in neural

information processing systems, 36:53728–53741, 2023.

Shyam Sundhar Ramesh, Yifan Hu, Iason Chaimalas, Viraj Mehta, Pier Giuseppe Sessa, Haitham Bou Am-

mar, and Ilija Bogunovic. Group robust preference optimization in reward-free rlhf. Advances in Neural

Information Processing Systems, 37:37100–37137, 2024.

Henry WJ Reeve, Timothy I Cannings, and Richard J Samworth. Adaptive transfer learning. The Annals

of Statistics, 49(6):3618–3649, 2021.

Mohamed El Amine Seddik, Cosme Louart, Mohamed Tamaazousti, and Romain Couillet. Random matrix

theory proves that deep learning representations of gan-data behave as gaussian mixtures. In Interna-

tional Conference on Machine Learning, pp. 8573–8582. PMLR, 2020.

31

http://arxiv.org/abs/1907.11692

References

Idan Shenfeld, Jyothish Pari, and Pulkit Agrawal. Rl’s razor: Why online reinforcement learning forgets

less. arXiv preprint arXiv:2509.04259, 2025.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks. Advances

in Neural Information Processing Systems, 34:24193–24205, 2021.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan

Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly capable

multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and Cheng-Zhong Xu. Hydralora: An asymmetric lora

architecture for efficient fine-tuning. Advances in Neural Information Processing Systems, 37:9565–9584,

2024.

Nilesh Tripuraneni, Michael Jordan, and Chi Jin. On the theory of transfer learning: The importance of

task diversity. Advances in neural information processing systems, 33:7852–7862, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz

Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing

systems, 30, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:

A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint

arXiv:1804.07461, 2018.

Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. Journal of Big

data, 3(1):9, 2016.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui Tao, and Fu Lee Wang. Parameter-efficient fine-

tuning methods for pretrained language models: A critical review and assessment. arXiv preprint

arXiv:2312.12148, 2023.

Guojun Zhang, Han Zhao, Yaoliang Yu, and Pascal Poupart. Quantifying and improving transferability

in domain generalization. Advances in Neural Information Processing Systems, 34:10957–10970, 2021.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient low-rank

adaptation for large language models fine-tuning. arXiv preprint arXiv:2308.03303, 2023a.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He, Yu Cheng,

Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-efficient fine-tuning.

arXiv preprint arXiv:2303.10512, 2023b.

32

A Useful results

Supplementary material

Notations. Here are two notations that we will use along the whole analysis:

λQ = ∥µβ∥2 + 1 + γ(1 + δQ), λR = ∥µ∥2 + 1 + γ̃(1 + δR) (24)

A Useful results

A.1 General lemmas

Here we will list useful lemmas used in our analysis.

Lemma A.1 (Resolvent identity). For invertible matrices A and B, we have:

A−1 −B−1 = A−1(B−A)B−1.

Lemma A.2 (Sherman-Morisson). For A ∈ Rp×p invertible and u,v ∈ Rp, A + uv⊤ is invertible if and

only if: 1 + v⊤A−1u ̸= 0, and:

(A + uv⊤)−1 = A−1 − A−1uv⊤A−1

1 + v⊤A−1u
.

Besides,

(A + uv⊤)−1u =
A−1u

1 + v⊤A−1u
.

A.2 Deterministic equivalents

Recall the expression of the resolvents defined in equation (9):

Q =

(
1

n
XX⊤ + γIp

)−1

,R =

(
1

N
X̃X̃⊤ + γ̃Ip

)−1

We define the matrices Q−i and R−i as the resolvents obtained by removing the contribution of the ith

sample, i.e:

Q−i =

 1

n

∑
k ̸=i

xkx
⊤
k + γIp

−1

, R−i =

 1

N

∑
k ̸=i

x̃kx̃
⊤
k + γ̃Ip

−1

then we have that:

Q =

(
Q−1

−i +
1

n
xix

⊤
i

)−1

, R =

(
R−1

−i +
1

N
x̃ix̃

⊤
i

)−1

Thus by Sherman-Morisson’s lemma:

Q = Q−i −
1

n

Q−ixix
⊤
i Q−i

1 + δQ
, R = R−i −

1
NR−ix̃ix̃

⊤
i R−i

1 + δR

where:

δQ =
1

n
Tr Q̄ =

η − γ − 1 +
√

(η − γ − 1)2 + 4ηγ

2γ
, δR =

1

N
Tr R̄ =

η̃ − γ̃ − 1 +
√

(η̃ − γ̃ − 1)2 + 4η̃γ

2γ̃

33

A Useful results

Thus, we get that:

Qxi =
Q−ixi

1 + δQ
, Rx̃i =

R−ix̃i

1 + δR
(25)

Using the above identities, we can easily prove the deterministic equivalents of Q and R stated in Lemma

3.6, which we will do in the following.

Lemma A.3 (Deterministic equivalent of Q and R). Under the high-dimensional regime and the assump-

tions 4.1, a deterministic equivalent for Q ≡ Q(γ) and for R ≡ R(γ), denoted Q̄ and R̄ respectively, as

defined in (9) are given by:

Q̄(γ) =

(
µβµ

⊤
β + Ip

1 + δQ
+ γIp

)−1

, R̄(γ) =

(
µµ⊤ + Ip

1 + δR
+ γIp

)−1

.

Where:

δQ =
1

n
Tr Q̄ =

η − γ − 1 +
√

(η − γ − 1)2 + 4ηγ

2γ
, δR =

1

N
Tr R̄ =

η̃ − γ̃ − 1 +
√

(η̃ − γ̃ − 1)2 + 4η̃γ

2γ̃
.

Lemma A.4 (Trace identities). Let Q̄, R̄ ∈ Rp×p be the deterministic matrices defined in lemma 3.6.

Then:

1

n

Tr((ΣβQ̄)2)

(1 + δQ)2
=

η

(1 + γ(1 + δQ))2
,

1

N

Tr((ΣR̄)2)

(1 + δR)2
=

η̃

(1 + γ̃(1 + δR))2
.

And:
1

N
Tr(R̄2Q̄2) = η̃

(
(1 + δR)(1 + δQ)

(1 + γ̃(1 + δR))(1 + γ(1 + δQ))

)2

Lemma A.5 (Relevant Identities). Let Q̄, R̄ ∈ Rp×p be the deterministic matrices defined in lemma 3.6.

Then we have the following identities:

µ⊤
β Q̄µβ =

(1 + δQ)∥µβ∥2
∥µβ∥2 + 1 + γ(1 + δQ)

, µ⊤
β Q̄

2µβ =

(
(1 + δQ)∥µβ∥

∥µβ∥2 + 1 + γ(1 + δQ)

)2

,

µ⊤R̄µ =
(1 + δR)∥µ∥2

∥µ∥2 + 1 + γ̃(1 + δR)
, µ⊤R̄2µ =

(
(1 + δR)∥µ∥

∥µ∥2 + 1 + γ̃(1 + δR)

)2

,

µ⊤R̄Q̄µβ =
(1 + δR)(1 + δQ)β∥µ∥2

(∥µ∥2 + 1 + γ̃(1 + δR))(∥µβ∥2 + 1 + γ(1 + δQ))
,

µ⊤R̄Q̄2µβ =
(1 + δR)

(∥µ∥2 + 1 + γ̃(1 + δR))

(
(1 + δQ)

(∥µβ∥2 + 1 + γ(1 + δQ))

)2

β∥µ∥2,

And finally:

µ⊤R̄Q̄2R̄µ

=

(
(1 + δR)(1 + δQ)∥µ∥

(1 + γ(1 + δQ))(∥µ∥2 + 1 + γ̃(1 + δR))

)2(
1 +

β3∥µ∥4
(∥µβ∥2 + 1 + γ(1 + δQ))2

− 2β2∥µ∥2
∥µβ∥2 + 1 + γ(1 + δQ)

)
.

34

A Useful results

Proof. The proof of all these identities relies on the following results:

R̄ =

(
µµ⊤

1 + δR
+

(
γ̃ +

1

1 + δR

)
Ip

)−1

= (1 + δR)
(
µµ⊤ + (1 + γ̃(1 + δR)Ip)

)−1

=
1 + δR

1 + γ̃(1 + δR)

(
µµ⊤

1 + γ̃(1 + δR)
+ Ip

)−1

=
1 + δR

1 + γ̃(1 + δR)

(
Ip −

µµ⊤

∥µ∥2 + 1 + γ̃(1 + δR)

)
(lemma A.2)

where the last equality is obtained using Sherman-Morisson’s identity (lemma A.2). Hence,

(R̄)2 =
(1 + δR)2

(1 + γ̃(1 + δR))2

(
Ip +

(µµ⊤)2

(∥µ∥2 + 1 + γ̃(1 + δR))2
− 2µµ⊤

∥µ∥2 + 1 + γ̃(1 + δR)

)
.

And the same for Q̄:

Q̄ =
1 + δQ

1 + γ(1 + δQ)

(
Ip −

µβµ
⊤
β

∥µβ∥2 + 1 + γ(1 + δQ)

)
,

(Q̄)2 =
(1 + δQ)2

(1 + γ(1 + δQ))2

(
Ip +

(µβµ
⊤
β)2

(∥µβ∥2 + 1 + γ(1 + δQ))2
−

2µβµ
⊤
β

∥µβ∥2 + 1 + γ(1 + δQ)

)
.

And using the second identity in Sherman-Morisson’s lemma A.2:

R̄µ =
(1 + δR)

∥µ∥2 + 1 + γ̃(1 + δR)
µ, Q̄µβ =

(1 + δQ)

∥µβ∥2 + 1 + γ(1 + δQ)
µβ

Lemma A.6 (Expectation some classifiers). Let w̃ and w be the classifiers defined earlier (α-FTC). We

have that:

E[w̃] =
1

1 + δR
R̄µ, E[w] =

1

1 + δQ
Q̄µβ.

Proof.

E[w̃] =
1

N

N∑
i=1

E[ỹiRx̃i]

=
1

N

N∑
i=1

1

1 + δR
E[ỹiR−ix̃i]

=
1

1 + δR
R̄µ

The proof of E[w] is similar to this latter.

35

A Useful results

Lemma A.7 (Deterministic equivalent). For any positive semi-definite matrix A, we have:

QAQ ↔ Q̄AQ̄ +
1

n

Tr(ΣβQ̄AQ̄)

(1 + δQ)2
E[QΣβQ],

and:

RAR ↔ R̄AR̄ +
1

N

Tr(ΣR̄AR̄)

(1 + δR)2
E[RΣR].

In particular for every a, b ∈ Rp:

a⊤ E[QΣβQ]b =
1

h
a⊤Q̄ΣβQ̄b, a⊤ E[RΣR]b =

1

h̃
a⊤R̄ΣR̄b.

Proof. The proof is derived similarly as in the appendix of Firdoussi & Seddik (2024). Again, the proof is

similar for both Q and R.

Let Q̄ be a deterministic equivalent of Q. The following equations and identities are valid in terms of

linear forms. We have that:

E[QAQ] = E[Q̄AQ] + E[(Q− Q̄)AQ]

= Q̄(E[AQ] + AE[Q− Q̄]) + E[(Q− Q̄)AQ]

= Q̄AQ̄ + E[(Q− Q̄)AQ]

Using lemma A.1, we have that:

Q− Q̄ = Q(Q̄−1 −Q−1)Q̄

= Q

(
Σβ

1 + δQ
− 1

n
XX⊤

)
Q̄

= Q

(
S− 1

n
XX⊤

)
Q̄

Thus:

E[QAQ] = Q̄AQ̄ + E[Q(S− 1

n
XX⊤)Q̄AQ]

= Q̄AQ̄ + E[QSQ̄AQ] − 1

n

n∑
i=1

E[Qxix
⊤
i Q̄AQ]

We have that:

E[Qxix
⊤
i Q̄AQ] =

1

1 + δQ
E[Q−ixix

⊤
i Q̄AQ]

=
1

1 + δQ

(
E[Q−ixix

⊤
i Q̄Q−i] − E[Q−ixix

⊤
i Q̄A

Q−ixix
⊤
i Q−i

n(1 + δQ)
]

)
=

1

1 + δQ

(
E[Q−iΣβQ̄AQ−i] − E[Q−ixix

⊤
i Q̄A

Q−ixix
⊤
i Q−i

n(1 + δQ)
]

)
=

1

1 + δQ

(
E[QΣβQ̄AQ] − E[Q−ixix

⊤
i Q̄A

Q−ixix
⊤
i Q−i

n(1 + δQ)
]

)

36

A Useful results

Therefore, by replacing the obtained expression of E[Qxix
⊤
i Q̄AQ] in the equation of E[QAQ], we get

that:

E[QAQ] = Q̄AQ̄ +
1

n2(1 + δQ)2

n∑
i=1

E[Q−ixix
⊤
i Q̄AQ−ixix

⊤
i Q−i]

= Q̄AQ̄ +
1

n2(1 + δQ)2

n∑
i=1

Tr(ΣβQ̄AQ̄)E[Q−ixix
⊤
i Q−i]

= Q̄AQ̄ +
1

n2(1 + δQ)2

n∑
i=1

Tr(ΣβQ̄AQ̄)E[Q−iΣβQ−i]

= Q̄AQ̄ +
1

n

Tr(ΣβQ̄AQ̄)

(1 + δQ)2
E[QΣβQ]

Which finally concludes the proof.

Now we will provide the result of a useful quantity that we will be using for computing the variance.

Lemma A.8 (Expectation of w̃⊤Aw̃). Let A ∈ Rp×p be a random matrix independent of w̃. We have

that:

E[w̃⊤Aw̃] =
1

(1 + δR)2

(
µ⊤ E[RAR]µ− 2

N(1 + δR)
Tr(ΣE[RAR])µ⊤R̄µ +

1

N
Tr(ΣE[RAR])

)
Proof. We have that:

E[w̃⊤Aw̃] =
1

N2

N∑
i,j=1

E[ỹiỹjx̃
⊤
i RARx̃j]

=
1

N2

∑
i̸=j

E[ỹiỹjx̃
⊤
i RARx̃j] +

1

N2

N∑
i=1

E[x̃⊤
i RARx̃i]

We have for i ̸= j:

E[ỹiỹjx̃
⊤
i RARx̃j] =

1

(1 + δR)2
E[ỹiỹjx̃iR−iAR−ix̃j]

=
1

(1 + δR)2
E

[
ỹiỹjx̃

⊤
i

(
R−ij −

1
NR−ijx̃jx̃

⊤
j R−ij

1 + δR

)
A

(
R−ij −

1
NR−ijx̃ix̃

⊤
i R−ij

1 + δR

)
x̃j

]
= A11 −A12 −A13 + A14

So let us compute each term independently:

A11 =
1

(1 + δR)2
E[ỹiỹjx̃

⊤
i R−ijAR−ijx̃j]

=
1

(1 + δR)2
µ⊤ E[RAR]µ

And :

A12 =
1

N(1 + δR)3
E[ỹiỹjx̃

⊤
i R−ijAR−ijx̃ix̃

⊤
i R−ijx̃j]

37

A Useful results

=
1

N(1 + δR)3
Tr(ΣE[RAR])E[ỹiỹjx̃

⊤
i R−ijx̃j]

=
1

N(1 + δR)3
Tr(ΣE[RAR])µ⊤R̄µ

And also we can easily observe that:

A13 = A12, A14 = O(N−1).

Thus:

E[ỹiỹjx̃
⊤
i RARx̃j] =

1

(1 + δR)2

(
µ⊤ E[RAR]µ− 2

N(1 + δR)
Tr(ΣE[RAR])µ⊤R̄µ

)
And for the second term in the equation of E[w̃Aw̃], we have:

E[x̃⊤
i RARx̃i] =

1

(1 + δR)2
E[x̃⊤

i R−iAR−ix̃i]

=
1

(1 + δR)2
E[Tr(x̃ix̃

⊤
i R−iAR−i)]

=
1

(1 + δR)2
Tr(E[x̃ix̃

⊤
i]E[R−iAR−i])

=
1

(1 + δR)2
Tr(ΣE[RAR])

Hence, finally:

E[w̃⊤Aw̃] =
1

(1 + δR)2

(
µ⊤ E[RAR]µ− 2

N(1 + δR)
Tr(ΣE[RAR])µ⊤R̄µ +

1

N
Tr(ΣE[RAR])

)

Lemma A.9 (Commutativity). Let R̄ and Q̄ be the resolvent matrices defined in lemma 3.6. We have

that:

Q̄Σβ = ΣβQ̄, R̄Σ = ΣR̄.

Proof. We will just prove it for Q̄ and Σβ because the other proof of the second identity is similar. We

know that:

Σβ = (1 + δQ)(Q̄−1 − γIp)

Thus:

Q̄Σβ = (1 + δQ)Q̄(Q̄−1 − γIp) = (1 + δQ)(Ip − γQ̄)

ΣβQ̄ = (1 + δQ)(Q̄−1 − γIp)Q̄ = (1 + δQ)(Ip − γQ̄)

which concludes the proof.

38

B RMT Analysis of the fine-tuned classifier

B RMT Analysis of the fine-tuned classifier

Let x ∼ N ((−1)aµβ, Ip) independent of the fine-tuning dataset X. We recall that:

wα = w + αw̃ − α

n
Q(γ)XX⊤w̃,

where:

w =
1

n
Q(γ)Xy, w̃ =

1

N
R(γ̃)X̃ỹ

B.1 Test Expectation

We have that:

E[w⊤
αx] = E[w⊤x] + αE[w̃⊤x] − α

n
E[w̃⊤XX⊤Qx] (26)

Let us compute each term of this previous sum.

First, using lemma A.6, we have that, since x is independent of X and of X̃:

E[w⊤x] = E[w]⊤ E[x] =
(−1)a

1 + δQ
µ⊤
β Q̄µβ

E[w̃⊤x] = E[w̃]⊤ E[x] =
(−1)a

1 + δR
µ⊤R̄µβ

And we have that:

E[w̃⊤XX⊤Qx] = E[w̃]⊤ E[XX⊤Q]E[x]

And:

E[XX⊤Q] =

n∑
i=1

E[xix
⊤
i Q]

=

n∑
i=1

1

1 + δQ
E[xix

⊤
i Qi]

=
n∑

i=1

1

1 + δQ
E[xix

⊤
i]Q̄

=
n

1 + δQ
ΣβQ̄

Thus:

1

n
E[w̃⊤XX⊤Qx] =

(−1)a

(1 + δR)

1

(1 + δQ)
µ⊤R̄ΣβQ̄µβ

=
(−1)a

1 + δR
µ⊤R̄(Ip − γQ̄)µβ

Finally:

E[w⊤
αx] = (−1)a

(
1

1 + δQ
µ⊤
β Q̄µβ +

α

1 + δR
µ⊤R̄µβ − α

1 + δR
µ⊤R̄(Ip − γQ̄)µβ

)
39

B RMT Analysis of the fine-tuned classifier

= (−1)a
(

1

1 + δQ
µ⊤
β Q̄µβ +

αγ

1 + δR
µ⊤R̄Q̄µβ

)
And using the identities in lemma A.5:

E[w⊤
αx] =

(−1)a

(∥µβ∥2 + 1 + γ(1 + δQ))

(
∥µβ∥2 +

αγ(1 + δQ)

(∥µ∥2 + 1 + γ̃(1 + δR))
β∥µ∥2

)
(27)

=
(−1)a

λQ

(
∥µβ∥2 +

αβγ(1 + δQ)

λR
∥µ∥2

)
(28)

B.2 Test Variance

To compute the variance of w⊤
αx, it suffices to compute the second moment: E[(w⊤

αx)2].

E[(w⊤
αx)2] = E[(w⊤x + αw̃⊤x)2 +

α2

n2
(w̃⊤XX⊤Qx)2 − 2α

n
w̃⊤XX⊤Qx(w⊤x + αw̃⊤x)] (29)

First term: We have that, as proved in (Firdoussi & Seddik, 2024):

E[(w⊤x)2] =
1

h(1 + δQ)

(
1

1 + δQ
µ⊤
β Q̄ΣβQ̄µβ − 2(1 − h)µ⊤

β Q̄µβ

)
+

1 − h

h

=
1

h(1 + δQ)

(
1

1 + δQ

(
(µ⊤

β Q̄µβ)2 + µ⊤
β Q̄

2µβ

)
− 2(1 − h)µ⊤

β Q̄µβ

)
+

1 − h

h

=
∥µβ∥2

h(∥µβ∥2 + 1 + γ(1 + δQ))

(∥µβ∥2 + 1

∥µβ∥2 + 1 + γ(1 + δQ)
− 2(1 − h)

)
+

1 − h

h

And:

E[(w̃⊤x)2] = E[w̃⊤xw̃⊤x]

= E[w̃⊤xx⊤w̃]

= E[w̃⊤Σβw̃]

Therefore by lemma A.8:

E[(w̃⊤x)2] =
1

(1 + δR)2

(
µ⊤ E[RΣβR]µ− 2

(1 + δR)

1

N
Tr(ΣE[RΣβR])µ⊤R̄µ +

1

N
Tr(ΣE[RΣβR])

)
(30)

And, we have that:

E[w⊤xw̃⊤x] = E[w⊤xx⊤w̃]

= E[w]⊤Σβ E[w̃]

=
1

(1 + δQ)(1 + δR)
µ⊤
β Q̄ΣβR̄µ

=
1

(1 + δR)
µ⊤
β (Ip − γQ̄)R̄µ

=
1

(1 + δR)
µ⊤
β R̄µ− γ

(1 + δR)
µ⊤
β Q̄R̄µ

40

B RMT Analysis of the fine-tuned classifier

And since E[w⊤xw̃⊤x] = E[w̃⊤xw⊤x], then:

E[w⊤xw̃⊤x] =
1

(1 + δR)
µ⊤
β R̄µ− γ

(1 + δR)
µ⊤
β R̄Q̄µ

and thus:

µ⊤
β R̄Q̄µ = µ⊤

β Q̄R̄µ (31)

Second term: Now let us compute the expectation of the second term in (41):

1

n2
E[(w̃⊤XX⊤Qx)2] =

1

n2
E[w̃⊤XX⊤Qxw̃⊤XX⊤Qx]

=
1

n2
E[w̃⊤XX⊤Qxx⊤XX⊤Qw̃]

=
1

n2
E[w̃⊤XX⊤QΣβXX⊤Qw̃]

= E[w̃⊤(Ip − γQ)Σβ(Ip − γQ)w̃]

Therefore, by lemma A.8:

1

n2
E[(w̃⊤XX⊤Qx)2] =

1

(1 + δR)2
µ⊤ E[R(Ip − γQ)Σβ(Ip − γQ)R]µ

+
Tr(ΣE[R(Ip − γQ)Σβ(Ip − γQ)R])

N(1 + δR)2

(
1 − 2

(1 + δR)
µ⊤R̄µ

)

Third term: Now we want to compute 2α
n E[w̃⊤XX⊤Qx(w⊤x + αw̃⊤x)]. So we have that:

E[w̃⊤XX⊤Qxw⊤x] = E[w̃]⊤ E[XX⊤Qxx⊤w]

= E[w̃]⊤ E[XX⊤QΣβw]

= E[w̃]⊤ E[
1

n
XX⊤QΣβQXy]

= E[w̃]⊤ E[(Q−1 − γIp)QΣβQXy]

= E[w̃]⊤ E[(Ip − γQ)ΣβQXy]

= E[w̃]⊤ (E[ΣβQXy] − γ E[QΣβQXy])

And we have that:

E[ΣβQXy] =

n∑
i=1

E[yiΣβQxi]

=
n

(1 + δQ)
E[yiΣβQ−ixi]

=
n

(1 + δQ)
ΣβQ̄µβ

= n(Ip − γQ̄)µβ

And:

E[QΣβQXy] =

n∑
i=1

E[yiQΣβQxi]

41

B RMT Analysis of the fine-tuned classifier

=
n

(1 + δQ)
E[yiQΣβQ−ixi]

=
n

(1 + δQ)
E

[
yi

(
Q−i −

1
nQ−ixix

⊤
i Q−i

1 + δQ

)
ΣβQ−ixi

]

=
n

(1 + δQ)

(
E[yiQ−iΣβQ−ixi] −

1

n(1 + δQ)
E[yiQ−ixix

⊤
i Q−iΣβQ−ixi]

)
=

n

(1 + δQ)

(
E[QΣβQ]µβ − 1

n(1 + δQ)
Tr(Σβ E[QΣβQ])Q̄µβ

)
=

n

h(1 + δQ)
Q̄ΣβQ̄µβ − n(1 − h)

h
Q̄µβ

= n

(
1

h
(Ip − γQ̄)Q̄µβ − 1 − h

h
Q̄µβ

)
= n(Q̄µβ − γ

h
Q̄2µβ)

Thus:
1

n
E[w̃⊤XX⊤Qxw⊤x] =

1

(1 + δR)
µ⊤R̄

(
Ip − 2γQ̄ +

γ2

h
Q̄2

)
µβ (32)

Let us now compute the remaining term:

1

n
E[w̃⊤XX⊤Qxw̃⊤x] =

1

n
E[w̃⊤XX⊤Qxx⊤w̃]

=
1

n
E[w̃⊤XX⊤QΣβw̃]

= E[w̃⊤(Ip − γQ)Σβw̃]

And again by lemma A.8:

1

n
E[w̃⊤XX⊤Qxw̃⊤x] =

1

(1 + δR)2
µ⊤ E[R(Ip − γQ)ΣβR]µ +

Tr(ΣE[R(Ip − γQ)ΣβR])

N(1 + δR)2

(
1 − 2

(1 + δR)
µ⊤R̄µ

)
Now let us group all the results as follows.

Terms without α: There is only one term which is:

T1 = E[(w⊤x)2] =
1

h(1 + δQ)

(
(2h− 1)µ⊤

β Q̄µβ − γµ⊤
β Q̄

2µβ

)
+

1 − h

h

=
∥µβ∥2

h(∥µβ∥2 + 1 + γ(1 + δQ))

(∥µβ∥2 + 1

∥µβ∥2 + 1 + γ(1 + δQ)
− 2(1 − h)

)
+

1 − h

h

Terms in α: There are two: 2E[w⊤xw̃⊤x] and 2
n E[w̃⊤XX⊤Qxw⊤x]:

T2 = 2E[w⊤xw̃⊤x] − 2

n
E[w̃⊤XX⊤Qxw⊤x]

=
2

(1 + δR)

(
µβR̄µ− γµ⊤

β R̄Q̄µ− µ⊤R̄(Ip − 2γQ̄ +
γ2

h
Q̄2)µβ

)
=

2γ

(1 + δR)
µ⊤R̄Q̄

(
Ip −

γ

h
Q̄
)
µβ

And using lemma A.5:

T2 =
2γ(1 + δQ)β∥µ∥2

(∥µ∥2 + 1 + γ̃(1 + δR)) (∥µβ∥2 + 1 + γ(1 + δQ))

(
1 − γ(1 + δQ)

h(∥µβ∥2 + 1 + γ(1 + δQ))

)
42

B RMT Analysis of the fine-tuned classifier

Terms in α2 : we have three terms: E[(w̃⊤x)2], 1
n2 E[(w̃⊤XX⊤Qx)2] and −2

n E[w̃⊤XX⊤Qxw̃⊤x]:

T3 = E[(w̃⊤x)2] +
1

n2
E[(w̃⊤XX⊤Qx)2] − 2

n
E[w̃⊤XX⊤Qxw̃⊤x]

=
γ

(1 + δR)2
µ⊤ (E[RQ̄ΣβR] − E[RΣβQ̄R] + γ E[RQΣβQR]

)
µ

+
γ

N(1 + δR)2

(
1 − 2

(1 + δR)
µ⊤R̄µ

)
Tr
(
Σ(E[RQ̄ΣβR] − E[RΣβQ̄R] + γ E[RQΣβQR])

)
=

γ2

(1 + δR)2

[
µ⊤ E[RQΣβQR]µ +

(
1 − 2

(1 + δR)
µ⊤R̄µ

)
1

N
Tr(ΣE[RQΣβQR])

]
where the last equality is gotten using lemma A.9.

We also have that:

1

N
Tr(ΣE[RQΣβQR]) =

1

N
Tr(E[ΣRQΣβQR])

=
1

N
E[Tr(ΣRQΣβQR)]

=
1

N
E[Tr(RΣRQΣβQ)]

=
1

N
Tr(E[RΣRQΣβQ])

=
1

N
Tr(E[RΣR]E[QΣβQ])

=
1

hh̃

1

N
Tr(R̄ΣR̄Q̄ΣβQ̄)

And:

µ⊤ E[RQΣβQR]µ = Tr(E[µ⊤RQΣβQRµ])

= E[Tr(Rµµ⊤RQΣβQ)]

= Tr(E[Rµµ⊤R]E[QΣβQ])

=
1

h
Tr(E[Rµµ⊤R]Q̄ΣβQ̄)

Thus:

T3 =
γ2

h(1 + δR)2

[
Tr(E[Rµµ⊤R]Q̄ΣβQ̄) +

(
1 − 2

(1 + δR)
µ⊤R̄µ

)
1

h̃

1

N
Tr(R̄ΣR̄Q̄ΣβQ̄)

]
Now remains to compute E[Rµµ⊤R]. For that, we use lemma A.7:

E[Rµµ⊤R] = R̄µµ⊤R̄ +
1

N

Tr(ΣR̄µµ⊤R̄)

(1 + δR)2
E[RΣR]

= R̄µµ⊤R̄ +
1

N

µ⊤R̄ΣR̄µ

(1 + δR)2
1

h̃
R̄ΣR̄

And since we are in the regime of N → ∞, then:

1

N
µ⊤R̄ΣR̄µ = O(N−1)

43

B RMT Analysis of the fine-tuned classifier

Thus:

E[Rµµ⊤R] = R̄µµ⊤R̄ (33)

Hence, T3 becomes:

T3 =
γ2

h(1 + δR)2

[
µ⊤R̄Q̄ΣβQ̄R̄µ +

(
1 − 2

(1 + δR)
µ⊤R̄µ

)
1

h̃

1

N
Tr(R̄ΣR̄Q̄ΣβQ̄)

]
And we also have that:

µ⊤R̄Q̄ΣβQ̄R̄µ = µ⊤R̄Q̄µβµ
⊤
β Q̄R̄µ + µ⊤R̄Q̄2R̄µ

=
(
µ⊤R̄Q̄µβ

)2
+ µ⊤R̄Q̄2R̄µ

And:

1

N
Tr(R̄ΣR̄Q̄ΣβQ̄) =

1

N
Tr(R̄2Q̄2)

Therefore:

T3 =
γ2

h(1 + δR)2

[(
µ⊤R̄Q̄µβ

)2
+ µ⊤R̄Q̄2R̄µ +

(
1 − 2

(1 + δR)
µ⊤R̄µ

)
1

h̃

1

N
Tr(R̄2Q̄2)

]
(34)

Then using lemmas A.4 and A.5:

T3 =
γ2

h(1 + δR)2

[(
µ⊤R̄Q̄µβ

)2
+ µ⊤R̄Q̄2R̄µ

]
+

γ2

h(1 + δR)2

(
1 − 2

(1 + δR)
µ⊤R̄µ

)
1

h̃

1

N
Tr(R̄2Q̄2)

=
γ2(1 + δQ)2

h
[
∥µ∥2
λ2
R

(
β2∥µ∥2
λ2
Q

+
1

(1 + γ(1 + δQ))2

(
1 +

β2∥µ∥2∥µβ∥2
λ2
Q

− 2β2∥µ∥2
λQ

))
+

η̃

(1 + γ(1 + δQ))2(1 + γ̃(1 + δR))2

(
1 − 2∥µ∥2

λR

)
]

=
γ2(1 + δQ)2

h

[
∥µ∥2
λ2
R

(
β2∥µ∥2
λ2
Q

+
1 − h

η

(
1 +

β2∥µ∥2∥µβ∥2
λ2
Q

− 2β2∥µ∥2
λQ

+ (1 − h̃)

(
1 − 2∥µ∥2

λR

)))]

Finally:

T1 =
∥µβ∥2
hλQ

(∥µβ∥2 + 1

λQ
− 2(1 − h)

)
+

1 − h

h
(35)

T2 =
2γβ(1 + δQ)∥µ∥2

λRλQ

(
1 − γ(1 + δQ)

hλQ

)
(36)

T3 =
γ2(1 + δQ)2

h

[
∥µ∥2
λ2
R

(
β2∥µ∥2
λ2
Q

+
1 − h

η

(
1 +

β2∥µ∥2∥µβ∥2
λ2
Q

− 2β2∥µ∥2
λQ

+ (1 − h̃)

(
1 − 2∥µ∥2

λR

)))]
(37)

And the expression of the second order expectation reads:

E[(w⊤
αx)2] = T1 + αT2 + α2T3 (38)

And finally, Theorem 4.2 follows:

44

C RMT analysis for arbitrary source classifier

Theorem B.1 (Gaussianity of the fine-tuned Ridge model). Let wα be the fine-tuned classifier as defined

in (α-FTC) and suppose that Assumption 4.1 holds. The decision function w⊤
αx, on some test sample

x ∈ Ca independent of X, satisfies:

w⊤
αx

D−→ N
(
(−1)amα, να −m2

α

)
,

where:

mα =
1

λQ

(
∥µβ∥2 +

αβγ(1 + δQ)

λR
∥µ∥2

)
,

να = T1 + αT2 + α2T3.

With:

T1 =
∥µβ∥2
hλQ

(∥µβ∥2 + 1

λQ
− 2(1 − h)

)
+

1 − h

h
,

T2 =
2γβ(1 + δQ)∥µ∥2

λRλQ

(
1 − γ(1 + δQ)

hλQ

)
,

T3 =
γ2(1 + δQ)2

h
×[

∥µ∥2
λ2
R

(
β2∥µ∥2
λ2
Q

+
1 − h

η

(
1 +

β2∥µ∥2∥µβ∥2
λ2
Q

− 2β2∥µ∥2
λQ

))
+

(1 − h)(1 − h̃)

η

(
1 − 2∥µ∥2

λR

)]
.

B.3 Finding optimal scaling parameter

Since the test accuracy is given by Atest = 1 − φ
(

(να −m2
α)−

1
2mα

)
as in Proposition 4.3, and that ϕ(x)

is a non-increasing function, then finding the optimal α∗ that maximizes the test accuracy boils down to

maximizing the term inside ϕ. Thus, by computing the derivative with respect to α of (να − m2
α)−

1
2mα

and finding the zero of the gradient gives us the final form of the best scaling parameter α∗:

α∗ =
λRT2∥µβ∥2 − 2βγT1(1 + δQ)∥µ∥2
βγT2(1 + δQ)∥µ∥2 − 2λRT3∥µβ∥2

And since the worst test accuracy is 50% (random classification), which is obtained for mα = 0, then

solving the previous equation gives the worst scaling ᾱ to use:

ᾱ = − λR∥µβ∥2
βγ(1 + δQ)∥µ∥2

C RMT analysis for arbitrary source classifier

Let x ∼ N ((−1)aµβ, Ip) be an independent test sample. Let w̃ be the source classifier (obtained through

some optimization algorithm). We recall that:

wα = w + αw̃ − α

n
Q(γ)XX⊤w̃, w =

1

n
Q(γ)Xy

45

C RMT analysis for arbitrary source classifier

C.1 Test Expectation

We have that:

E[w⊤
αx] = E[w⊤x] + αE[w̃⊤x] − α

n
E[w̃⊤XX⊤Qx] (39)

Let us compute each term of this previous sum.

First, using lemma A.6, we have that, since x is independent of X:

E[w⊤x] = E[w]⊤ E[x] =
(−1)a

1 + δQ
µ⊤
β Q̄µβ

And we have that:

E[w̃⊤x] = (−1)aw̃⊤µβ

And:

α

n
E[w̃⊤XX⊤Qx] =

α

n

n∑
i=1

E[w̃⊤xix
⊤
i Qx]

=
α

n(1 + δQ)

n∑
i=1

E[w̃⊤xix
⊤
i Q−ix]

=
α

n(1 + δQ)

n∑
i=1

E[w̃⊤ΣβQ−ix]

=
(−1)aα

1 + δQ
w̃⊤ΣβQ̄µβ

Thus:

E[w⊤
αx] = (−1)a

(
1

1 + δQ
µ⊤
β Q̄µβ + αw̃⊤µβ − α

1 + δQ
w̃⊤ΣβQ̄µβ

)
= (−1)a

(
1

1 + δQ
µ⊤
β Q̄µβ + αw̃⊤µβ − αw̃⊤(Q̄−1 − γIp)Q̄µβ

)
= (−1)a

(
1

1 + δQ
µ⊤
β Q̄µβ + αγw̃⊤Q̄µβ

)
Using the forumlas in lemma A.5:

E[w⊤
αx] =

(−1)a

∥µβ∥2 + 1 + γ(1 + δQ)

(
∥µβ∥2 + αγ(1 + δQ)w̃⊤µβ

)
(40)

C.2 Test variance

To compute the variance of w⊤
αx, it suffices to compute the second moment: E[(w⊤

αx)2].

E[(w⊤
αx)2] = E[(w⊤x + αw̃⊤x)2 +

α2

n2
(w̃⊤XX⊤Qx)2 − 2α

n
w̃⊤XX⊤Qx(w⊤x + αw̃⊤x)] (41)

46

C RMT analysis for arbitrary source classifier

First term: We start by computing

E[(w⊤x + αw̃⊤x)2] = E[(w⊤x)2] + α2 E[(w̃⊤x)2] + 2αE[w⊤xw̃⊤x]

We have that, as proved in Firdoussi & Seddik (2024):

E[(w⊤x)2] =
1

h(1 + δQ)

(
1

1 + δQ
µ⊤
β Q̄ΣβQ̄µβ − 2(1 − h)µ⊤

β Q̄µβ

)
+

1 − h

h

=
1

h(1 + δQ)

(
1

1 + δQ

(
(µ⊤

β Q̄µβ)2 + µ⊤
β Q̄

2µβ

)
− 2(1 − h)µ⊤

β Q̄µβ

)
+

1 − h

h

=
∥µβ∥2

h(∥µβ∥2 + 1 + γ(1 + δQ))

(∥µβ∥2 + 1

∥µβ∥2 + 1 + γ(1 + δQ)
− 2(1 − h)

)
+

1 − h

h

And we have that:

E[(w̃⊤x)2] = w̃⊤Σβw̃

And:

E[w⊤xw̃⊤x] = E[w]⊤Σβw̃

=
1

1 + δQ
µ⊤
β Q̄Σβw̃

Thus we have the first sum.

Second term: Now let us compute the expectation of the second term:

1

n2
E[(w̃⊤XX⊤Qx)2] =

1

n2
E[w̃⊤XX⊤Qxx⊤XX⊤Qw̃]

= w̃⊤ E[
1

n
XX⊤QΣβ

1

n
XX⊤Q]w̃

= w̃⊤ E[(Q−1 − γIp)QΣβ(Q−1 − γIp)Q]w̃

= w̃⊤ E[(Ip − γQ)Σβ(Ip − γQ)]w̃

= w̃⊤ E
[
Σβ − γΣβQ− γQΣβ + γ2QΣβQ

]
w̃

= w̃⊤ (Σβ − γΣβQ̄− γQ̄Σβ + γ2
)
w̃

= w̃⊤Σβw − 2γw̃⊤ΣβQ̄w̃ + γ2w̃⊤ E[QΣβQ]w̃

Third term: Now we will compute the last term: 2α
n E[w̃⊤XX⊤Qx(w⊤x + αw̃⊤x)].

We have that:

1

n
E[w̃⊤XX⊤Qxx⊤w] = w̃⊤ E[(Q−1 − γIp)QΣβw]

= w̃⊤ E[(Ip − γQ)Σβw]

= w̃⊤Σβ E[w] − γw̃⊤ E[QΣβw]

= w̃⊤ Σβ

1 + δQ
Q̄µβ − γw̃⊤ E[QΣβw]

47

C RMT analysis for arbitrary source classifier

= w̃⊤ Σβ

1 + δQ
Q̄µβ − γ

1

n

n∑
i=1

w̃⊤ E[QΣβQyixi]

= w̃⊤ Σβ

1 + δQ
Q̄µβ − γw̃⊤ E[QΣβQyixi]

= w̃⊤ Σβ

1 + δQ
Q̄µβ − γ

1 + δQ
w̃⊤ E[QΣβQ−iyixi]

= w̃⊤ Σβ

1 + δQ
Q̄µβ − γ

1 + δQ
w̃⊤ E

[(
Q−i −

1
nQ−ixix

⊤
i Q−i

1 + δQ

)
ΣβQ−iyixi

]

= w̃⊤ Σβ

1 + δQ
Q̄µβ − γ

1 + δQ
w̃⊤ E[Q−iΣβQ−iyixi] +

γ

n(1 + δQ)2
w̃⊤ E[Q−ixix

⊤
i Q−iΣβQ−iyixi]

= w̃⊤ Σβ

1 + δQ
Q̄µβ − γ

1 + δQ
w̃⊤ E[QΣβQ]µβ +

γ

n(1 + δQ)2
Tr(Σβ E[QΣβQ])w̃⊤Q̄µβ

And:

1

n
E[w̃⊤XX⊤Qxx⊤w̃] = w̃⊤ E[(Q−1 − γIp)QΣβ]w̃

= w̃⊤ E[(Ip − γQ)Σβ]w̃

= w̃⊤Σβw̃ − γw̃⊤Q̄Σβw̃

Grouping all the terms: Thus, we now that we have the expression of all the term, we will group them

in the following way:

E[(w⊤
αx)2] = T1 + αT2 + α2T3

Terms without α:

T1 =
∥µβ∥2

h(∥µβ∥2 + 1 + γ(1 + δQ))

(∥µβ∥2 + 1

∥µβ∥2 + 1 + γ(1 + δQ)
− 2(1 − h)

)
+

1 − h

h
(42)

Terms in α: There are two : 2E[w⊤xw̃⊤x] and 2
n E[w̃⊤XX⊤Qxw⊤x]:

T2 = 2E[w⊤xw̃⊤x] − 2

n
E[w̃⊤XX⊤Qxw⊤x]

=
2γ

h(1 + δQ)

(
w̃⊤Q̄ΣβQ̄µβ − (1 − h)(1 + δQ)w̃⊤Q̄µβ

)
=

2γ

h(1 + δQ)

(
w̃⊤Q̄µβµ

⊤
β Q̄µβ + w̃⊤Q̄2µβ − (1 − h)(1 + δQ)w̃⊤Q̄µβ

)
And we have that:

w̃⊤Q̄µβµ
⊤
β Q̄µβ =

(1 + δQ)2∥µβ∥2w̃⊤µβ

(∥µβ∥2 + 1 + γ(1 + δQ))2
, w̃⊤Q̄2µβ =

(1 + δQ)2w̃⊤µβ

(∥µβ∥2 + 1 + γ(1 + δQ))2
.

Thus:

T2 =
2γ(1 + δQ)w̃⊤µβ

h(∥µβ∥2 + 1 + γ(1 + δQ))

(∥µβ∥2 + 1

∥µβ∥2 + 1 + γ(1 + δQ)
− (1 − h)

)

48

D Extension to Multi-Source Transfer Learning

Terms in α2: we have three terms: E[(w̃⊤x)2], 1
n2 E[(w̃⊤XX⊤Qx)2] and −2

n E[w̃⊤XX⊤Qxw̃⊤x]:

T3 = E[(w̃⊤x)2] +
1

n2
E[(w̃⊤XX⊤Qx)2] − 2

n
E[w̃⊤XX⊤Qxw̃⊤x]

= w̃⊤Σβw̃ + w̃⊤Σβw̃ − 2γw̃⊤ΣβQ̄w̃ + γ2w̃⊤ E[QΣβQ]w̃ − 2w̃⊤Σβw̃ + 2γw̃⊤Q̄Σβw̃

= γ2w̃⊤ E[QΣβQ]w̃

=
γ2

h
w̃⊤Q̄ΣβQ̄w̃

=
γ2

h

(
(w̃⊤Q̄µβ)2 + w̃⊤Q̄2w̃

)
=

γ2(1 + δQ)2

h

(
(w̃⊤µβ)2

(∥µβ∥2 + 1 + γ(1 + δQ))2
+

1 − h

η

(
∥w̃∥2 +

∥µβ∥2(w̃⊤µβ)2

(∥µβ∥2 + 1 + γ(1 + δQ))2
− 2(w̃⊤µβ)2

∥µβ∥2 + 1 + γ(1 + δQ)

))
=

γ2(1 + δQ)2

h

(
(w̃⊤µβ)2

λ2
Q

+
1 − h

η
∥w̃∥2 +

(1 − h)(w̃⊤µβ)2

ηλQ

(∥µβ∥2
λQ

− 2

))

D Extension to Multi-Source Transfer Learning

Given T source classifiers {wt}Tt=1 and a single target task, the goal is to fine-tune a mixture of these

classifiers on the target task. Specifically, we want to find the optimal fine-tuned classifier wΩ that is

written as:

wΩ =

T∑
t=1

αtwt + a

where αt ∈ R and a is an adapter trained on the target dataset as follows:

a = arg minv

1

n
∥X⊤(

T∑
t=1

αtwt + v) − y∥2 + γ∥v∥2

Then, a expresses as:

a =
1

n

(
1

n
XX⊤ + γIp

)−1
(
Xy −XX⊤

T∑
t=1

αtwt

)
Thus, our new fine-tuned classifier writes as:

wΩ =

T∑
t=1

αtwt + a =
1

n
QXy + γ

T∑
t=1

αtQwt

To compute the theoretical test accuracy of this classifier, we will take a test sample x ∼ N ((−1)aµβ, Ip),

independent from the training data (xi)
n
i=1, and we compute the statistics of the decision function w⊤

Ωx.

D.1 Test Expectation

We have that:

E[w⊤
Ωx] = E[w⊤x] + γ

T∑
t=1

αt E[w⊤
t Qx]

49

D Extension to Multi-Source Transfer Learning

= E[w⊤x] + (−1)aγ

T∑
t=1

αtw
⊤
t Q̄µβ

From the previous section, we have that:

E[w⊤x] =
(−1)a

1 + δQ
µ⊤
β Q̄µβ =

(−1)a∥µβ∥2
∥µβ∥2 + 1 + γ(1 + δQ)

And from lemma A.5, we have that:

w⊤
t Q̄µβ =

(1 + δQ)⟨wt,µβ⟩
∥µβ∥2 + 1 + γ(1 + δQ)

Finally, we get that:

E[w⊤
Ωx] =

(−1)a

∥µβ∥2 + 1 + γ(1 + δQ)

(
∥µβ∥2 + γ(1 + δQ)

T∑
t=1

αt⟨wt,µβ⟩
)

In a vectorized form, denote by α = (α1, . . . , αT)⊤ the vector of coefficients and by W = (w1, . . . ,wT) ∈
Rp×T , then we have that:

E[w⊤
Ωx] = (−1)a

(
∥µβ∥2 + γ(1 + δQ)α⊤W⊤µβ

)
∥µβ∥2 + 1 + γ(1 + δQ)

D.2 Test variance

Now we will compute the expectation of the second order moment of w⊤
Ωx:

E[(w⊤
Ωx)2] = E

(w⊤x)2 + γ2

(
T∑
t=1

αtw
⊤
t Qx

)2

+ 2γ
T∑
t=1

αtw
⊤
t Qxw⊤x


Let us compute each term of this sum and then aggregate the results at the end.

First term. We have that:

E[(w⊤x)2] =
∥µβ∥2
hλQ

(∥µβ∥2 + 1

λQ
− 2(1 − h)

)
+

1 − h

h

Second term. Now let us compute the second term of the sum:

E

[
T∑
t=1

αtw
⊤
t Qxw⊤x

]
=

T∑
t=1

αt E[w⊤
t Qxx⊤w]

=
T∑
t=1

αt E[w⊤
t QΣβw]

=
T∑
t=1

αtw
⊤
t E[QΣβ

1

n

n∑
i=1

yiQxi]

50

D Extension to Multi-Source Transfer Learning

=

T∑
t=1

αtw
⊤
t E[QΣβQyixi] (xi i.i.d)

=
1

1 + δQ

T∑
t=1

αtw
⊤
t E[QΣβQ−iyixi]

And since we have that:

Q = Q−i −
Q−ixix

⊤
i Q−i

n(1 + δQ)

Then:

E

[
T∑
t=1

αtw
⊤
t Qxw⊤x

]
=

1

1 + δQ

T∑
t=1

αtw
⊤
t E

[(
Q−i −

Q−ixix
⊤
i Q−i

n(1 + δQ)

)
ΣβQ−iyixi

]

=
1

1 + δQ

T∑
t=1

αtw
⊤
t E[Q−iΣβQ−iyixi] −

1

n(1 + δQ)2

T∑
t=1

αtw
⊤
t E[Q−ixix

⊤
i Q−iΣβQ−iyixi]

We have that:

T∑
t=1

αtw
⊤
t E[Q−iΣβQ−iyixi] =

T∑
t=1

αtw
⊤
t E[QΣβQ]µβ

=
1

h

T∑
t=1

αtw
⊤
t Q̄ΣβQ̄µβ

=
1

h

T∑
t=1

αt
(1 + δQ)2

λ2
Q

⟨wt,µβ⟩
(
∥µβ∥2 + 1

)
And we have that:

1

n(1 + δQ)2

T∑
t=1

αtw
⊤
t E[Q−ixix

⊤
i Q−iΣβQ−iyixi] =

1

n(1 + δQ)2

T∑
t=1

αtw
⊤
t E[Q−iyixi Tr(xix

⊤
i Q−iΣβQ−i)]

=
1

n(1 + δQ)2

T∑
t=1

αtw
⊤
t E[Q−iyixi Tr(Σβ E[QΣβQ])]

=
1

n(1 + δQ)2

T∑
t=1

αtw
⊤
t E[Q−iyixi]

1

h
Tr((ΣβQ̄)2)

=
1 − h

h

T∑
t=1

αtw
⊤
t Q̄µβ

=
1 − h

h

T∑
t=1

αt
(1 + δQ)⟨wt,µβ⟩

λQ

Thus the second term is given by:

E

[
T∑
t=1

αtw
⊤
t Qxw⊤x

]
=

(1 + δQ)

hλQ

T∑
t=1

αt

(∥µβ∥2 + 1

λQ
− (1 − h)

)
⟨wt,µβ⟩

=
(1 + δQ)

hλQ

(∥µβ∥2 + 1

λQ
− (1 − h)

)
α⊤W⊤µβ

51

D Extension to Multi-Source Transfer Learning

Third term. We have that:

γ2 E

(T∑
t=1

αtw
⊤
t Qx

)2
 = γ2 E

[
T∑
t=1

αtw
⊤
t Qx

T∑
k=1

αkw
⊤
k Qx

]

= γ2
T∑

t,k=1

E[αtαkw
⊤
t Qxx⊤Qwk]

= γ2
T∑

t,k=1

E[w⊤
t QΣβQwk]

= γ2
T∑

t,k=1

w⊤
t E[QΣβQ]wk

=
γ2

h

T∑
t,k=1

αtαkw
⊤
t Q̄ΣβQ̄wk

And we have that:

Q̄ΣβQ̄ = Q̄
(
µβµ

⊤
β + Ip

)
Q̄

= Q̄µβµ
⊤
β Q̄ + Q̄2

=
(1 + δQ)2

λ2
Q

µβµ
⊤
β +

(1 + δQ)2

(1 + γ(1 + δQ))2

(
Ip +

(µβµ
⊤
β)2

λ2
Q

−
2µβµ

⊤
β

λQ

)
Thus the last term is given by:

γ2 E

(T∑
t=1

αtw
⊤
t Qx

)2
 =

γ2(1 + δQ)2

h
×

T∑
t,k=1

αtαk

[
⟨wt,µβ⟩⟨wk,µβ⟩

λ2
Q

+
1

(1 + γ(1 + δQ))2

(
⟨wt,wk⟩ +

∥µβ∥2⟨wt,µβ⟩⟨wk,µβ⟩
λ2
Q

− 2⟨wt,µβ⟩⟨wk,µβ⟩
λQ

)]

In a vectorized form, we have that:

γ2 E

(T∑
t=1

αtw
⊤
t Qx

)2
 =

γ2(1 + δQ)2

h
×

[
(α⊤W⊤µβ)2

λ2
Q

+
1

(1 + γ(1 + δQ))2

(
α⊤W⊤Wα +

∥µβ∥2(α⊤W⊤µβ)2

λ2
Q

− 2(α⊤W⊤µβ)2

λQ

)]

=
γ2(1 + δQ)2

h
α⊤Mα

where:

M =
(1 − h)

η
W⊤W +

(
1

λ2
Q

+
(1 − h)

ηλQ

(∥µβ∥2
λQ

− 2

))
W⊤µβµ

⊤
βW

⊤

Finally gives us the expression of the second order moment of w⊤
Ωx as follows:

E[(w⊤
Ωx)2] = T1 + T2 + T3

52

E Extension to Linear Regression Transfer

where:

T1 =
∥µβ∥2
hλQ

(∥µβ∥2 + 1

λQ
− 2(1 − h)

)
+

1 − h

h

T2 =
2γ(1 + δQ)

hλQ

T∑
t=1

αt

(∥µβ∥2 + 1

λQ
− (1 − h)

)
⟨wt,µβ⟩

T3 =
γ2(1 + δQ)2

h
×

T∑
t,k=1

αtαk

[
⟨wt,µβ⟩⟨wk,µβ⟩

λ2
Q

+
1

(1 + γ(1 + δQ))2

(
⟨wt,wk⟩ +

∥µβ∥2⟨wt,µβ⟩⟨wk,µβ⟩
λ2
Q

− 2⟨wt,µβ⟩⟨wk,µβ⟩
λQ

)]
Which also writes in a vectorized form:

T1 =
∥µβ∥2
hλQ

(∥µβ∥2 + 1

λQ
− 2(1 − h)

)
+

1 − h

h

T2 =
2γ(1 + δQ)

hλQ

(∥µβ∥2 + 1

λQ
− (1 − h)

)
α⊤W⊤µβ

T3 =
γ2(1 + δQ)2

h
α⊤Mα

E Extension to Linear Regression Transfer

We start by stating the lemmas which will be necessary to derive our results.

E.1 Preliminary results

We have that the resolvent matrix we’re working with in this section is given by:

Q(γ) =

(
1

n
XX⊤ + γIp

)−1

A deterministic equivalent of this latter is:

Q̄(γ) =
1 + δ

1 + γ(1 + δ)
Ip, δ =

η − γ − 1 +
√

(η − γ − 1)2 + 4ηγ

2γ
(43)

Lemma E.1 (Deterministic equivalent of QAQ). For any deterministic positive semi-definite matrix

A ∈ Rp×p, we have that:

QAQ ↔ (1 + δ)2

(1 + γ(1 + δ))2
A +

1

n

Tr(A)

(1 + γ(1 + δ))2
E[Q2]

Furthermore, we can use the above d.e to find that:

E[Q2] =
(1 + δ)2

(1 + γ(1 + δ))2 − η
Ip (44)

Which then gives a simplified expression of the above deterministic equivalent:

QAQ ↔ (1 + δ)2

(1 + γ(1 + δ))2

(
A +

1
n Tr(A)

(1 + γ(1 + δ))2 − η
Ip

)
Proof. Similar to the proof of lemma A.7.

53

E Extension to Linear Regression Transfer

E.2 Test error

We recall that we want to study the transfer learning between two linear regression tasks. In fact, given a

pre-trained (source) linear regressor Ws, we want to adapt it to fit a target dataset comprised of n features

X = [x1, . . . ,xn] ∈ Rp×n and their corresponding labels Y = [y1, . . . ,yn] ∈ Rd×n where:

xi ∼ N (0, Ip), yi = Wtxi + zi, zi ∼ N (0, σ2Id)

This gave us a closed-form solution of the fine-tuned classifier which expresses as follows:

Wα =
1

n
YX⊤Q + αγWsQ

To evaluate the efficiency of this fine-tuning process, we can compute the theoretical test error of this

regressor defined as follows:

Etest = E
[
∥Wαx− y∥2

]
(45)

for test samples (x,y) independent of the training set. This error decomposes as follows:

Etest = E[∥Wαx∥2 + ∥y∥2 − 2x⊤W⊤
αy]

Therefore, we will compute the expectation of each term and then aggregate the results to get the theoretical

test risk of the fine-tuned regressor.

First, denote by:

λ = (1 + γ(1 + δ)) (46)

First term. We have that:

E[∥y∥2] = E[y⊤y]

= E[(Wtx + z)⊤(Wtx + z)]

= E[x⊤W⊤
t Wtx] + 2E[x⊤W⊤

t z] + E[z⊤z]

We have that:

E[x⊤W⊤
t Wtx] = Tr(E[xx⊤W⊤

t Wt]) = Tr(E[xx⊤]W⊤
t Wt) = Tr(W⊤

t Wt)

And:

E[x⊤W⊤
t z] = E[x]⊤W⊤

t E[z] = 0

and finally:

E[z⊤z] = σ2.d

Thus:

E[|y∥2] = Tr(W⊤
t Wt) + σ2.d

54

E Extension to Linear Regression Transfer

Second term. We will now compute: E[x⊤Wαy]. We have that:

E[x⊤W⊤
αy] = Tr(E[x⊤W⊤

αy])

= Tr(E[yx⊤W⊤
α])

= Tr(E[yx⊤]E[W⊤
α])

We have that:

E[yx⊤] = E[(Wtx + z)x⊤]

= E[Wtxx
⊤ + zx⊤]

= Wt

And :

E[W⊤
α] =

1

n
E[QXY⊤] + αγ E[QW⊤

s]

=
1

n

⊤∑
i=1

E[Qxiy
⊤
i] + αγQ̄W⊤

s

=
1

n(1 + δ)

n∑
i=1

E[Q−ixiy
⊤
i] + αγQ̄W⊤

s

=
1

n(1 + δ)

n∑
i=1

E[Q−i Ei[xiy
⊤
i]] + αγQ̄W⊤

s

=
1

n(1 + δ)

n∑
i=1

Q̄W⊤
t + αγQ̄W⊤

s

= Q̄

(
W⊤

t

1 + δ
+ αγW⊤

s

)
=

(1 + δ)

λ

(
W⊤

t

1 + δ
+ αγW⊤

s

)
Thus:

E[x⊤Wαy] =
1

λ

(
Tr(W⊤

t Wt) + αγ(1 + δ) Tr(W⊤
s Wt)

)
Third term. Now we will compute the last term of our sum: E[∥Wαx∥2]. We have that:

E[∥Wαx∥2] = E[x⊤W⊤
αWαx]

= Tr(E[xx⊤]E[W⊤
αWα])

= Tr(E[W⊤
αWα])

And we have that:

E[W⊤
αWα] = E

[
(
1

n
QXY⊤ + αγQW⊤

s)(
1

n
YX⊤Q + αγWsQ)

]
=

1

n2
E[QXY⊤YX⊤Q] +

2αγ

n
E[QW⊤

s YX⊤Q] + (αγ)2 E[QW⊤
s WsQ]

55

E Extension to Linear Regression Transfer

= A1 + A2 + A3

We have that:

A1 =
1

n2
E[QXY⊤YX⊤Q] =

1

n2

n∑
i,j=1

E[Qxiy
⊤
i yjx

⊤
j Q]

=
1

n2

n∑
i=1

E[Qxiy
⊤
i yix

⊤
i Q] +

1

n2

∑
i̸=j

E[Qxiy
⊤
i yjx

⊤
j Q]

=
1

n
E[Qxiy

⊤
i yix

⊤
i Q] + (1 − 1

n
)E[Qxiy

⊤
i yjx

⊤
j Q]

= T1 + T2

We compute each term of this decomposition then aggregate the results. We have that:

T1 =
1

n
E[Qxiy

⊤
i yix

⊤
i Q] =

1

n(1 + δ)2
E[Q−ixiy

⊤
i yix

⊤
i Q−i] =

1

n(1 + δ)2
E[Q−i Ei[xiy

⊤
i yix

⊤
i]Q−i]

And:

E[xiy
⊤
i yix

⊤
i] = E[xi(x

⊤
i W

⊤
t + z⊤

i)(Wtxi + zi)x
⊤
i]

= E[xi(x
⊤
i W

⊤
t Wtxi + 2x⊤

i W
⊤
t zi + z⊤

i zi)x
⊤
i]

= E[xix
⊤
i W

⊤
t Wtxix

⊤
i] + E[xiz

⊤
i zix

⊤
i] (because E[zi] = 0)

= E[xix
⊤
i W

⊤
t Wtxix

⊤
i] + σ2.d.E[xix

⊤
i]

= E[xix
⊤
i W

⊤
t Wtxix

⊤
i] + σ2.d.Ip

And by concentration in random matrices, we have that the term: 1
nx

⊤
i W

⊤
t Wtxi concentrates to its

expectation rapidly, and: 1
n E[x⊤

i W
⊤
t Wtxi] = 1

n Tr(W⊤
t Wt). Thus:

E[xiy
⊤
i yix

⊤
i] =

(
Tr(WtW

⊤
t) + σ2.d

)
Ip

Thus:

T1 =
1

n(1 + δ)2

(
Tr(WtW

⊤
t) + σ2.d

)
E[Q2]

=

(
Tr(WtW

⊤
t) + σ2.d

)
n(λ2 − η)

Ip

And then we have that:

T2 = (1 − 1

n
)E[Qxiy

⊤
i yjx

⊤
j Q]

= E[Qxiy
⊤
i yjx

⊤
j Q] + O(n−1)

=
1

(1 + δ)2
E[Q−ixiy

⊤
i yjx

⊤
j Q−j]

=
1

(1 + δ)2
E

[(
Q−ij −

Q−ijxjx
⊤
j Q−ij

n(1 + δ)

)
xiy

⊤
i yjx

⊤
j

(
Q−ij −

Q−ijxix
⊤
i Q−ij

n(1 + δ)

)]

56

E Extension to Linear Regression Transfer

=
1

(1 + δ)2
(B1 −B2 −B3 + B4)

In fact:

B1 = E[Q−ijxiy
⊤
i yjx

⊤
j Q−ij]

= E[Q−ij Ei[xiy
⊤
i]Ej [yjx

⊤
j]Q−ij]

= E[Q−ijW
⊤
t WtQ−ij]

= E[QW⊤
t WtQ]

=
(1 + δ)2

λ2

(
W⊤

t Wt +
Tr(WtW

⊤
t)

n(λ2 − η)
Ip

)
And:

B2 =
1

n(1 + δ)
E[Q−ijxiy

⊤
i yjx

⊤
j Q−ijxix

⊤
i Q−ij]

=
1

n(1 + δ)
E[Q−ijxix

⊤
i Q−ij] Tr(E[y⊤

i yjx
⊤
j Q−ijxi])

=
1

n(1 + δ)
E[Q−ijxix

⊤
i Q−ij] Tr(W⊤

t WtQ̄)

=
Tr(WtW

⊤
t)

nλ
E[Q−ijxix

⊤
i Q−ij]

=
Tr(WtW

⊤
t)

nλ
E[Q2]

Thus:

B2 =
(1 + δ)2

nλ(λ2 − η)
Tr(WtW

⊤
t)Ip

And because the training data is i.i.d:

B3 = B2, B4 = O(n−1)

Hence:

T2 =
1

(1 + δ)2
(B1 − 2b2)

=
W⊤

t Wt

λ2
+

Tr(WtW
⊤
t)

nλ(λ2 − η)

(
1

λ
− 2

)
Ip

Thus:

A1 = T1 + T2

=
W⊤

t Wt

λ2
+

Tr(WtW
⊤
t)

nλ(λ2 − η)

(
1

λ
− 2

)
Ip +

Tr(WtW
⊤
t)

n(λ2 − η)
Ip +

σ2.d

n(λ2 − η)
Ip

=
W⊤

t Wt

λ2
+

σ2.d

n(λ2 − η)
Ip +

Tr(WtW
⊤
t)

n(λ2 − η)

(
1 +

1

λ2
− 2

λ

)
Ip

=
W⊤

t Wt

λ2
+

σ2.d

n(λ2 − η)
Ip +

Tr(WtW
⊤
t)

n(λ2 − η)

(
1 − 1

λ

)2

Ip

57

E Extension to Linear Regression Transfer

=
W⊤

t Wt

λ2
+

σ2.d

n(λ2 − η)
Ip +

(λ− 1)2

λ2

Tr(WtW
⊤
t)

n(λ2 − η)
Ip

Thus:

Tr(A1) =
Tr(WtW

⊤
t)

λ2
+

σ2.dη

λ2 − η
+

η(λ− 1)2

λ2

Tr(WtW
⊤
t)

λ2 − η

=
(λ(1 + η) − 2η)

λ(λ2 − η)
Tr(WtW

⊤
t) +

σ2.d.η

λ2 − η

Hence:

Tr(A1) =
(λ(1 + η) − 2η)

λ(λ2 − η)
Tr(WtW

⊤
t) +

σ2.d.η

λ2 − η

Now let us compute the term A2 = 2αγ
n E[QW⊤

s YX⊤Q]. We have that:

A2 =
2αγ

n
E[QW⊤

s YX⊤Q]

=
2αγ

n

n∑
i=1

E[QW⊤
s yix

⊤
i Q]

=
2αγ

n(1 + δ)

n∑
i=1

E[QW⊤
s yix

⊤
i Q−i]

=
2αγ

n(1 + δ)

n∑
i=1

E
[(

Q−i −
Q−ixix

⊤
i Q−i

n(1 + δ)

)
W⊤

s yix
⊤
i Q−i

]

=
2αγ

n(1 + δ)

n∑
i=1

E
[
Q−iW

⊤
s yix

⊤
i Q−i

]
− 2αγ

n2(1 + δ)2

n∑
i=1

E
[
Q−ixix

⊤
i Q−iW

⊤
s yix

⊤
i Q−i

]
=

2αγ

(1 + δ)
E[Q−iW

⊤
s yix

⊤
i Q−i] −

2αγ

n(1 + δ)2
E[Q−ixix

⊤
i Q−iW

⊤
s yix

⊤
i Q−i]

= T1 − T2

We have that:

T1 =
2αγ

(1 + δ)
E[Q−iW

⊤
s yix

⊤
i Q−i]

=
2αγ

(1 + δ)
E[Q−iW

⊤
s WtQ−i]

=
2αγ

(1 + δ)

(1 + δ)2

λ2

(
W⊤

s Wt +
Tr(W⊤

s Wt)

n(λ2 − η)
Ip

)
=

2αγ(1 + δ)

λ2

(
W⊤

s Wt +
Tr(W⊤

s Wt)

n(λ2 − η)
Ip

)
And:

T2 =
2αγ

n(1 + δ)2
E
[
Q−ixix

⊤
i Q−iW

⊤
s yix

⊤
i Q−i

]
=

2αγ

n(1 + δ)2
E[Q−ixix

⊤
i Q−i] Tr(E[x⊤

i Q−iW
⊤
s yi])

=
2αγ

n(1 + δ)2
E[Q2] Tr(WtQ̄W⊤

s)

58

E Extension to Linear Regression Transfer

=
2αγ

n(1 + δ)2
(1 + δ)

λ
Tr(WtW

⊤
s)E[Q2]

=
2αγ

nλ(1 + δ)
Tr(WtW

⊤
s)E[Q2]

=
2αγ

nλ(1 + δ)
Tr(WtW

⊤
s)

(1 + δ)2

λ2 − η
Ip

=
2αγ(1 + δ)

nλ(λ2 − η)
Tr(WtW

⊤
s)Ip

Then:

Tr(A2) = Tr(T1 − T2) =
2αγ(1 + δ)(λ− η)

λ(λ2 − η)
Tr(WtW

⊤
s)

Finally, we need to compute the last term: A3 = (αγ)2 E[QW⊤
s WsQ]. We have that:

A3 = (αγ)2 E[QW⊤
s WsQ]

= (αγ)2
(1 + δ)2

λ2

(
W⊤

s Ws +
Tr(WsW

⊤
s)

n(λ2 − η)
Ip

)
Thus:

Tr(A3) =
(αγ(1 + δ))2

λ2

(
1 +

η

λ2 − η

)
Tr(WsW

⊤
s)

=
(αγ(1 + δ))2

λ2 − η
Tr(WsW

⊤
s)

Now let us write the test error Etest in the following form:

Etest = T1 + αT2 + α2T3 (47)

Constant term T1. We have that:

T1 = Tr(WtW
⊤
t) + σ2.d− 2

λ
Tr(WtW

⊤
t) +

λ(1 + η) − 2η

λ(λ2 − η)
Tr(WtW

⊤
t) +

σ2.d.η

λ2 − η

=

(
1 − 2

λ
+

λ(1 + η) − 2η

λ(λ2 − η)

)
Tr(WtW

⊤
t) + σ2.d

(
1 +

η

λ2 − η

)
=

(λ− 1)2

λ2 − η
Tr(WtW

⊤
t) +

σ2.d.λ2

λ2 − η

Linear term T2. We have that:

T2 =
2γ(1 + δ)(λ− η)

λ(λ2 − η)
Tr(WtW

⊤
s) − 2γ(1 + δ)

λ
Tr(WtW

⊤
s)

=
2γ(1 + δ)(1 − λ)

λ2 − η
Tr(WtW

⊤
s)

Quadratic term T3. We have that:

T3 =
(γ(1 + δ))2

λ2 − η
Tr(WsW

⊤
s)

59

F LLMs experimental details

E.3 Optimal scaling parameter

The goal is to find a parameter α that minimizes the test error Etest = T1 + αT2 + α2T3. The objective

function has a unique extremum point α given by:

α∗ = − T2

2T3

By replacing T2 and T3 by their corresponding values, we get that:

α∗ =
Tr(WtW

⊤
s)

Tr(WsW⊤
s)

(48)

This result is counter-intuitive, as the optimal α∗ does not depend on the number of finetuning samples

n.

F LLMs experimental details

F.1 Hyperparameters

In this section, we summarize all the details about our experiments on Fine-tuning roberta-base model

on GLUE tasks. Let us define some notations first then give their corresponding values in each experiment:

lora r denotes the rank of LoRA modules, lora alpha denotes the LoRA scaling parameter, lr adapter

means the learning rate used to train LoRA modules, batch size and batch alpha is the training batch

size for LoRA modules and the vectors α respectively, lr alpha is the learning rate used to update α,

optim alpha is the optimizer used to train the vectors α, val split is the percentage of the training set

used to train α.

Common to all experiments. We optimize the LoRA modules using AdamW for all the benchmarks

and with a linear scheduler for the learning rate. We initialize the vectors α to the vector 1. The target

modules are: the final classifier layer classifier (full training) and the attention modules query and

value (Low Rank Adaptation).

F.2 Values of scaling parameters

We report in the following plots some metrics (mean, standard deviation, percentiles) describing the ob-

tained values of the vectors α for each module after the training phase.

60

F LLMs experimental details

Parameter Value

optimizer AdamW

LoRA Arguments

lora r 8

lora alpha 8

lr adapter 10−4

Trainer Arguments

n epochs 10

batch size 64

optim alpha AdamW

batch alpha 64

lr alpha 10−2

T 1

val split 1

seeds 1, 5, 123

Table 3: Implementation Details for the fine-tuning experiment on MNLI.

Parameter Value

optimizer AdamW

LoRA Arguments

lora r 8

lora alpha 8

lr adapter 10−4 for LoRA and 2.10−4 for α-LoRA

Trainer Arguments

n epochs 10

batch size 64

optim alpha Adam

batch alpha 64

lr alpha 5.10−3

T 20

val split 0.2

seeds 1, 3, 123

Table 4: Implementation Details for the fine-tuning experiment on QNLI.

61

F LLMs experimental details

Parameter Value

optimizer AdamW

LoRA Arguments

lora r 8

lora alpha 8

lr adapter 10−4 for LoRA and 2.10−4 for α-LoRA

Trainer Arguments

n epochs 40

batch size 64

optim alpha Adam

batch alpha 64

lr alpha 5.10−3

T 20

val split 0.2

seeds 3, 5, 123

Table 5: Implementation Details for the fine-tuning experiment on MRPC.

Parameter Value

optimizer AdamW

LoRA Arguments

lora r 8

lora alpha 8

lr adapter 10−4

Trainer Arguments

n epochs 40

batch size 64

optim alpha AdamW

batch alpha 64

lr alpha 5.10−3

T 20

val split 0.8 (and 0.2 for seed 123)

seeds 3, 5, 123

Table 6: Implementation Details for the fine-tuning experiment on RTE.

62

F LLMs experimental details

Parameter Value

optimizer AdamW

LoRA Arguments

lora r 8

lora alpha 8

lr adapter 10−4 for LoRA and 2.10−4 for α-LoRA

Trainer Arguments

n epochs 10

batch size 128

optim alpha AdamW

batch alpha 128

lr alpha 5.10−3

T 10 (and 20 for seed 5)

val split 0.5 (and 0.9 for seed 5)

seeds 1, 3, 5

Table 7: Implementation Details for the fine-tuning experiment on SST2.

Parameter Value

optimizer AdamW

LoRA Arguments

lora r 8

lora alpha 8

lr adapter 5.10−4

Trainer Arguments

n epochs 5

batch size 256

optim alpha Adam, AdamW (seed 123)

batch alpha 64

lr alpha 5.10−3

T 1 (seed 3), 10 (seed 5) and 20 (seed 123)

val split 0.8

seeds 3, 5, 123

Table 8: Implementation Details for the fine-tuning experiment on QQP.

63

F LLMs experimental details

qu
er

y_
1

va
lu

e_
1

qu
er

y_
2

va
lu

e_
2

qu
er

y_
3

va
lu

e_
3

qu
er

y_
4

va
lu

e_
4

qu
er

y_
5

va
lu

e_
5

qu
er

y_
6

va
lu

e_
6

qu
er

y_
7

va
lu

e_
7

qu
er

y_
8

va
lu

e_
8

qu
er

y_
9

va
lu

e_
9

qu
er

y_
10

va
lu

e_
10

qu
er

y_
11

va
lu

e_
11

qu
er

y_
12

va
lu

e_
12

qu
er

y_
13

va
lu

e_
13

qu
er

y_
14

va
lu

e_
14

qu
er

y_
15

va
lu

e_
15

qu
er

y_
16

va
lu

e_
16

qu
er

y_
17

va
lu

e_
17

qu
er

y_
18

va
lu

e_
18

qu
er

y_
19

va
lu

e_
19

qu
er

y_
20

va
lu

e_
20

qu
er

y_
21

va
lu

e_
21

qu
er

y_
22

va
lu

e_
22

qu
er

y_
23

va
lu

e_
23

qu
er

y_
24

va
lu

e_
24

0.8

0.9

1.0

1.1

1.2

Al
ph

a
st

at
ist

ics
 (p

er
 7

68
-d

im
 c

hu
nk

)

Alpha statistics across query/value layers
25 75 percentile
Mean ± Std

Figure 10: Statistics of the vectors α for the QNLI benchmark

qu
er

y_
1

va
lu

e_
1

qu
er

y_
2

va
lu

e_
2

qu
er

y_
3

va
lu

e_
3

qu
er

y_
4

va
lu

e_
4

qu
er

y_
5

va
lu

e_
5

qu
er

y_
6

va
lu

e_
6

qu
er

y_
7

va
lu

e_
7

qu
er

y_
8

va
lu

e_
8

qu
er

y_
9

va
lu

e_
9

qu
er

y_
10

va
lu

e_
10

qu
er

y_
11

va
lu

e_
11

qu
er

y_
12

va
lu

e_
12

qu
er

y_
13

va
lu

e_
13

qu
er

y_
14

va
lu

e_
14

qu
er

y_
15

va
lu

e_
15

qu
er

y_
16

va
lu

e_
16

qu
er

y_
17

va
lu

e_
17

qu
er

y_
18

va
lu

e_
18

qu
er

y_
19

va
lu

e_
19

qu
er

y_
20

va
lu

e_
20

qu
er

y_
21

va
lu

e_
21

qu
er

y_
22

va
lu

e_
22

qu
er

y_
23

va
lu

e_
23

qu
er

y_
24

va
lu

e_
24

0.94

0.96

0.98

1.00

1.02

1.04

Al
ph

a
st

at
ist

ics
 (p

er
 7

68
-d

im
 c

hu
nk

)

Alpha statistics across query/value layers
25 75 percentile
Mean ± Std

Figure 11: Statistics of the vectors α for the RTE benchmark

64

	Introduction and contributions
	Related work
	Theoretical setting and mathematical background
	Theoretical Setting
	RMT Background

	Main Theoretical Results
	RMT Assumptions
	Theoretical performance with Ridge source classifier
	Theoretical performance with arbitrary source classifier
	Conclusion of our theory

	Experiments
	Within our theoretical model: Linear Binary Classification
	Beyond our theoretical model: Supervised Fine-tuning for LLMs

	Multi-source Transfer Learning
	Asymptotic distribution of the test
	Characterization of the optimal scaling factors

	The case of regression: fine-tuning a weight matrix
	Discussion and Conclusion
	Useful results
	General lemmas
	Deterministic equivalents

	RMT Analysis of the fine-tuned classifier
	Test Expectation
	Test Variance
	Finding optimal scaling parameter

	RMT analysis for arbitrary source classifier
	Test Expectation
	Test variance

	Extension to Multi-Source Transfer Learning
	Test Expectation
	Test variance

	Extension to Linear Regression Transfer
	Preliminary results
	Test error
	Optimal scaling parameter

	LLMs experimental details
	Hyperparameters
	Values of scaling parameters

