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Abstract

Fine-Tuning has proven to be highly effective in adapting pre-trained models to perform better on new
desired tasks with minimal data samples. Among the most widely used approaches are reparameterization
methods, which update a target module by augmenting its frozen weight matrix with an additional trainable
weight matrix. The most prominent example is Low Rank Adaption (LoRA) (Hu et al., 2022) which gained
significant attention in recent years. In this work, we introduce a new class of reparameterization methods
for transfer learning, designed to enhance the generalization ability of fine-tuned models. We establish the
effectiveness of our approach in a high-dimensional binary classification setting using tools from Random
Matrix Theory, and further validate our theoretical findings through more realistic experiments such as
fine-tuning large language models. Finally, we extend our analysis to multi-source and regression transfer
settings, highlighting the generality and robustness of our approach. Overall, this work provides both theo-
retical insight and practical algorithms that bridge Random Matrix Theory and efficient model adaptation.
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1 Introduction and contributions

1 Introduction and contributions

Large foundational models have driven major advances in artificial intelligence across domains such as
computer vision and natural language processing. Examples include transformer-based models (Vaswani
et al., 2017) operating in natural language domain, known as Large Language Models (LLMs), such as
Gemini (Team et al., 2023) and Llama (Grattafiori et al., 2024), and on the vision domain such as Vision
Transformers (Dosovitskiy et al., 2020). Such models are specifically known for their relatively large size
and massive training corpus, which makes them more powerful and adapted for many use cases. However,
even with their extensive pre-training, these large models may not excel at some specific tasks without fur-
ther adjustment. To achieve improvements of this kind, a process known as Fine-Tuning is often needed.
Fine-tuning involves adapting a pre-trained model to a target task by continuing its training on task-
specific data. Unlike training from scratch, fine-tuning leverages the general representations learned dur-
ing pre-training and refines them to capture task-relevant information, thereby improving performance
while reducing data and computational requirements. The most common class of fine-tuning methods is
Supervised Fine-Tuning (SFT), which relies on labeled data in that process, and one of the most popular
lightweight SFT methods is Low-Rank Adaptation (LoRA) (Hu et al., 2022), which updates the desired
module by adding a low-rank perturbation to the original (frozen) weight matrix.

In this project, we study fine-tuning through the lens of Random Matrix Theory (RMT), where we in-
troduce a theoretical framework to understand and improve transfer learning. Leveraging the theoretical
findings, our key practical idea in the context of LoRA is to scale the frozen weights row-wise with a
vector a before adaptation, thereby adding a new degree of freedom to the fine-tuning process. We show
that this modification leads to an optimal scaling factor a*, which is typically different from the standard
choice (a = 1). We analyze this framework in a high-dimensional binary classification setting under a
Gaussian Mixture Model, proving the existence of an optimal a* while providing its closed-form expres-
sion in terms of scalar data-dependent quantities. We then validate our theoretical insights on real tasks,
including transfer learning benchmarks and large language model fine-tuning, in addition to extending the

theoretical results to other classification and regression settings.

Summary of contributions. Our work on fine-tuning is novel and presents many contributions to the

community, which we summarize as follows:

1. We introduce a new class of Supervised Fine-Tuning algorithms characterized by an additional scaling

parameter .

2. We theoretically prove the existence of an optimal parameter o # 1 and derive its expression in

binary classification.

3. We propose an algorithm for finding such optimal « for complex scenarios such as fine-tuning language

models.



2 Related work

2 Related work

Transfer Learning foundations. Transfer Learning (TL) studies how knowledge acquired in a source
task or domain can be reused to improve learning in a related target task. Early surveys (Pan & Yang, 2009;
Weiss et al., 2016) outlined key settings such as domain adaptation and multitask learning. A foundational
study by Ben-David et al. (2010) established generalization bounds that relate target error to source error
and distributional divergence, providing theoretical criteria for effective transfer. Building on this, Maurer
et al. (2016) showed that shared representations across tasks can reduce sample complexity in multitask
settings, further emphasizing the role of representation learning. Tripuraneni et al. (2020) analyzed the
impact of task diversity on TL and show that by learning a shared feature representation from diverse
tasks, the amount of data needed for a new task is greatly reduced, scaling only with the complexity of the
new task itself, rather than the complexity of the entire system. Other works such as (Hanneke & Kpotufe,
2024; Zhang et al., 2021; Klivans et al., 2024; Kpotufe & Martinet, 2021; Cai & Wei, 2021; Reeve et al.,
2021) have tackled TL theoretically each from a different perspective and on a different setting (regression

or classification).

Fine-Tuning pre-trained models. With the advent of large-scale pretraining, fine-tuning has become
the dominant strategy for transfer learning. The most popular fine-tuning techniques are Supervised Fine-
Tuning (SFT) and fine-tuning with Reinforcement Learning (RL). RL-based approaches such as RLHF
(Ouyang et al., 2022), DPO (Rafailov et al., 2023), GRPO (Ramesh et al., 2024; Guo et al., 2025) and
other variants are specifically effective on reasoning and mathematics tasks, where they often outperform
SEFT (Shenfeld et al., 2025). In this paper, however, we only focus on SF'T techniques. In fact, SFT extends
the training of the given pre-trained model using labeled data. However, as the size of used pre-trained
models is generally large, a common approach to fine-tuning is to modify a small fraction of the model’s
parameters while leaving most of them unmodified. This strategy, known as Parameter-Efficient Fine-
Tuning (PEFT) (Xu et al., 2023), aims to achieve strong performance with minimal parameter updates.
PEFT methods are usually grouped into three categories: additive, selective, and reparameterized (Ji et al.,
2025).

Additive Fine-Tuning. The most popular additive fine-tuning approach is Adapters (Houlsby et al.,
2019; He et al., 2021), which adds a minimal number of new trainable parameters that are strategically
positioned within the model architecture, while keeping the rest of the model frozen. Variants explore
different placement strategies, scaling, and modular reuse (Pfeiffer et al., 2020; Karimi Mahabadi et al.,
2021). These added layers/modules act as computational bottlenecks, refining the model’s output while

leveraging the existing pre-trained parameters.

Selective Fine-Tuning. Unlike additive PEFT, selective PEFT does not add extra layers or modules
to the original model, but updates a specific subset of the existing parameters within the model. This is
achieved for instance by applying a binary mask to the model’s parameters, where each element of the mask

is either 0 or 1, indicating whether the corresponding parameter should be updated during fine-tuning.



2 Related work

Popular selective techniques include Diff pruning (Guo et al., 2020), FishMask (Sung et al., 2021) and PaFi
(Liao et al., 2023).

Reparameterized Fine-Tuning. Reparameterization-based fine-tuning adapts a model by expressing
its parameters in an alternative form, commonly through a low-rank decomposition, to reduce training
costs, while the full weight matrices are reconstructed for inference. The most common technique in this
class is Low Rank Adaptation (LoRA) (Hu et al., 2022), which introduces small, trainable matrices op-
erating alongside the pre-trained weights to inject task-specific updates without burdening the inference
process. Many extensions were proposed to enhance the efficiency of LoRA by either acting on the initial-
ization of the low rank modules (Hayou et al., 2024a), their learning rates (Hayou et al., 2024b), normalizing
the updates (Liu et al., 2024), setting adaptive ranks (Kim et al., 2024; Lu et al., 2024), finding optimal
placements for LoRA modules (Hayou et al., 2025), and more (Zhang et al., 2023b; Dettmers et al., 2023;
Kopiczko et al., 2023; Zhang et al., 2023a; Tian et al., 2024; Jiang et al., 2024).

While prior work has proposed numerous variants of LoRA that adjust ranks, placements, or normalization
schemes, little attention has been paid to the scaling of frozen weights themselves. Our work is comple-
mentary to these approaches: rather than modifying the structure of the low-rank modules, we focus on
the scaling dynamics of the pre-trained component and provide the first theoretical analysis of its impact

using Random Matrix Theory.
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3 Theoretical setting and mathematical background

It is common in Machine Learning research that in order to prove the effectiveness of some method or
algorithm, we theoretically analyze it in simple settings and then use the obtained results to build insights
and intuitions on more complex settings (such as LLMs). Thus, to prove the effectiveness of our new family
of fine-tuning algorithms, we will theoretically analyze a binary classification setting under a Gaussian
Mixture Model (GMM) using tools from Random Matrix Theory (RMT). Through this analysis, we will
prove the existence of an optimal scaling parameter o* and derive its exact theoretical formulation for

these settings.

3.1 Theoretical Setting

The goal is to fine-tune a linear classifier, initially pretrained on a dataset called source, in order to

perform a target task given a relatively small target data corpus.

Pre-training phase. We consider that we are given pairs of pre-training (source) data samples {(&;, 7;)} Y,
that are distributed, for &; € €, with a € {1,2}, as follows:

:-i:i: a+£i7 EZNJV(LI ’
Zct o a (0.1,) (1)

gi = (—1)".
For convenience and without loss of generality, we further assume that g, = (—1)%u for some vector
p € RP. This setting can be recovered by subtracting #15£2 from each data point, as such p = #2721 and
therefore the SNR ||p|| controls the difficulty of the classification problem, in the sense that large values

of |||l yield a simple classification problem whereas when ||p| — 0, the classification becomes impossible.

Remark 3.1 (On the d:%ta model). Note that the above data assumption can be relaxed (generalized) to
considering x; = pg + C& z; where C, is some semi-definite covariance matrix and z; are random vectors
with i.1.d entries of mean 0, variance 1 and bounded fourth order moment. In fact, in the high-dimensional
regime when n,p — 00, the asymptotic performance of the classifier considered subsequently is universal
in the sense that it depends only on the statistical means and covariances of the data (Louart & Couillet,
2018; Seddik et al., 2020; Dandi et al., 2024). However, such a general setting comes at the expense of
more complex formulas, making the above isotropic assumption more convenient for readability and better

interpretation of our findings.

Denoting X = [&1, ..., Zx] € RPN the data matrix and § = [j1,...,9n5]' € RY the corresponding labels
vector, we have in matrix form:

X=uj +2, (2)
where Z is a random matrix with .47(0,1) i.i.d. entries.

We then consider training a classifier, called w, on this source dataset by optimizing:

N
1 ~
min — 3 fw @, ) + 7wl (3)
=1



3 Theoretical setting and mathematical background

for some loss function ¢ and a positive regularization parameter 4 > 0. Taking a generic loss function, such
as the binary cross entropy, leads to intractable solution w. Fortunately, Mai & Liao (2024) show that in
the case of a Gaussian mixture data model or more generally a data distribution with finite fourth-order
moment (remark 3.1), it is possible to optimize such classifier using the squared (L?) loss function, which
also gives a closed-form solution to this problem. Thus, taking /(x,y) = (x — 3)? leads to the following
optimization problem:

_ N s N2 2
@ = argming, - [XTv — g +3llvl3, @)

Which gives us the following solution:
- 1 o l oot . -t

Fine-tuning phase. During the fine-tuning phase, we suppose that we are given pairs of target data
{(xi, i)}, with y; € {—1,1} that are distributed such that X = [x,...,z,] € RP*" is given by:

X=pgy +Z, ps=pBu+p, (6)

L is an orthogonal vector to g and the factor

where Z is a random matrix with .47(0,1) i.i.d. entries, p
B € R quantifies the alignment between the source and target data, as we have that: (g, u) = 8|/
The goal is to leverage the original classifier w to train a new classifier on this target dataset. The standard
reparameterization approach for doing so is modeled by adding a trainable classifier to w, and then training

it on the target data, i.e solving:
[ 2 2
mm—HX (w—l—v)—y” +vvl|3
v N 2

However, we can generalize this method even further by introducing a scaling parameter to the pre-trained
classifier w, which adds up a new degree of freedom to this learning process and makes a better use of the
pretraining phase. Thus, leveraging the pre-trained weights w € RP, we consider the training of adapter
weights a as:

U T, 2 2
a:argmmvEHX (Ozw—i—’v)—yHZ—i—W’H’UH% (7)

for a scalar a € R. Solving the previous minimization problem, a expresses as:

1/1 !
a=-— ( XX+ 71p> <Xy - aXXTw) . (8)
n

n
We define the resolvent matrices Q and R by:
1 ! 1o !
Q= (nxxT + ylp) , R= <NXXT + ﬁyIp> : (9)

Then our obtained fine-tuned classifier w,, writes:
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We denote by w = wy the classifier obtained through learning directly on target data (without fine-tuning),
which is given by: .
w = -Q(v)Xy (No-FT)

Then we finally get the expression of our a-Fine-tuned classifier as follows:
w, = w + ayQw (a-FTC)

Remark 3.2 (About the interpretability of our fine-tuned classifier). Remark that the parameter o in-
troduced in the expression of the fine-tuned classifier ws characterizes the contribution of each training
dataset (source and target) to the test performance on the target task. In fact, since the prediction of the
class label does mot change by multiplying w, by a positive constant, then by taking a positive o and for

p= QL& € (0,1), the fine-tuned classifier is equivalent to this convexr weighted classifier:

w, =pw + (1 —pa

and therefore, this new parameter p can be interpreted as the percentage of the contribution of the source

task to the test performance on the target task.

Remark 3.3 (About the regularization parameter ). We remark from the expression of wy in (a-FTC)
that the weight decay v is essential to have the dependence of w, on «. In fact, taking v — 0 leads to a
fine-tuned classifier of the form:

w, = (XX )Xy

where (XX ")t is the Moore-Penrose inverse of the symmetric semi-definite matric XX 1. Therefore, the
obtained classifier does not depend on « here, nor on the pre-trained model w. Additionally, having such a
reqularization technique is essential in transfer learning since the target dataset is generally much smaller
than the pre-training one, and therefore the fine-tuning process can easily lead to overfitting in the absence

of a reqularization technique.

3.2 RMT Background

To theoretically study the fine-tuned classifier w,, we can leverage tools from Random Matrix Theory. In
mathematical terms, the understanding of the asymptotic performance of the classifier w, boils down to
the characterization of the statistical behavior of the resolvent matrices Q(z) and R(z) introduced in (9).
In the following, we will recall some important notions and results from random matrix theory, which will

be at the heart of our analysis. We start by defining the main object, which is the resolvent matrix.

Definition 3.4 (Resolvent). For a symmetric matriz M € RP*P | the resolvent Qpr(2) of M is defined for
z € C\F(M) as:
Qur(z) = (M —2L,) "},

where /(M) is the set of eigenvalues or spectrum of M.

10



3 Theoretical setting and mathematical background

In fact, the study of the asymptotic performance of w, involves the estimation of linear forms of the
resolvents Q and R in (9), such as %TrQ and a'Qb with a,b € RP of bounded Euclidean norms.
Therefore, the notion of a deterministic equivalent (Hachem et al., 2007) is crucial as it allows the design of a
deterministic matrix, having (in probability or almost surely) asymptotically the same scalar observations

as the random ones in the sense of linear forms. A rigorous definition is provided below.

Definition 3.5 (Deterministic equivalent (Hachem et al., 2007)). We say that Q € RP*P is a deterministic
equivalent for the random resolvent matriz Q € RP*P if, for any bounded linear form u : RP*P — R, we

have that, as p — oco:

where the convergence is in the almost sure sense.

In particular, a deterministic equivalent for the resolvents Q(z) and R(z) defined in (9) is given by the

following Lemma.

( )
Lemma 3.6 (Deterministic equivalent of Q and R). Under the high-dimensional regime, when

p,n, N — oo with 2 — n € (0,00) and & — 7 € (0,00) and assuming |p| = O(1), a deterministic
equivalent for Q = Q(v) and for R = R(y), previously defined in (9), denoted Q and R respectively,

are given by:

_ o + 1 o pp’ +1 -
Q) - +Lp) R0 = (B

1+4d¢ 1+94r
Where:
5 lmeo 1= 14V -y =D +dny o A-F-1+/(-F-1) + 475
Q= I'Q— ) 6R_ = .
n 2y 2y
| J

Proof. We will prove the deterministic equivalent of Q, and the proof of R can be derived similarly. In
general, we want to find a deterministic equivalent Q of the same form of Q, i.e we consider Q(vy) =

(S+ ’yIp)_l and we want to find a deterministic matrix S € RP*P such that for any linear form u:

Or more simply:

We have that:
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And since: Qxz; = %—-:521 and that we want E[Q] = Q in linear forms, we get that:

1 ¢ e N . | 1 R
E KQS—n;Qwimi ) Q] =Q8Q- > ;- EQ.wx]Q

i=1 Q

—esa- LYyl qual+a @il

= " - 11 5@ HBHg D i —i
T

= Mapg +1p\

= Q( - )Q

+0g
.
Finally, it suffices to take: S = % to get the desired result. O

4 Main Theoretical Results

After having defined the setting and needed background, we will now present our main technical results,

which describe the asymptotic behavior of the fine-tuned classifier defined in (a-FTC).

4.1 RMT Assumptions

We provide our results under the following growth rate assumptions (classical assumptions in Random

Matrix Theory).

Assumption 4.1 (Growth Rates). Suppose that as p,n, N — oco:
1) E—=nelf0,00), 2)F—n€(000),  3)[ul=0(Q), 4) sl = 0(1).

The first and second assumptions simply state that our analysis considers both the low (1,7 < 1) and
high (9,7 > 1) dimensional regimes. The third and last assumptions are also fundamental and state that
the norm of the source p and target pg data means do not scale with the dimension p, which makes the

classification problem neither easy (||p|| — o0) nor impossible (||p]| — 0) in high dimensions.

4.2 Theoretical performance with Ridge source classifier

Having stated the main assumptions, we are now in a position to present our main technical findings about
the theoretical test performance of the fine-tuned classifier a-FTC. But beforehand, let us define some

scalar quantities that will be useful in our derivations:

U
(1+7(1+60))*

Ao = s> +14+7(1+6g), Ae=|pl>+1+5(1+6g), h=1-

P U
(1+5(146r))?

Our main theorem below describes the behavior of the decision function of our fine-tuned classifier.

12



4 Main Theoretical Results

( N\
Theorem 4.2 (Gaussianity of the fine-tuned Ridge model). Let w, be the fine-tuned classifier as
defined in (a-FTC) and suppose that Assumption 4.1 holds. The decision function w.x, on some
test sample x € 6, independent of X, satisfies:

’LUTiU —@—> N ((—1)ama, Va — ma) )
where:
1 aBy(1+0g)
o = 5c- (sl + XD g
Q R
Vo =T1 + T + a2T3.
With:
sl [ Nlaesll® + 1 1—h
T = —2(1—nh —
T Thag Ao Q=R+ =
7 280 +0)llel® (| v(1+5g)
2 ARAQ hg )
2 2
7 720+ 50P
h
el (P 1oh (y PUellslt 2P o (1 2
2 2 2
A5 Ao n Ao AQ AR
|\ J

In simple terms, Theorem 4.2 states that the decision function of the classifier (a-FTC) is asymptotically

equivalent to the thresholding of two monovariate Gaussian random variables with respective means my
2

and —m, and standard deviation v, — mZ,

where the statistics m,, and v, are expressed in terms of the
scalar quantities defined above. This behavior is highlighted in Figure 1 which depicts the histogram of
the decision function for the different values of o and § along with the theoretical Gaussian distributions
as per Theorem 4.2. The gaussian distribution comes from Lyupanov’s Central Limit theorem, so we only
needed to compute the first and second order moments of the decision function w_] x (for a test sample x)
to prove the above theorem, which was presented in details in Appendix B.

Having characterized the distribution of the decision function of w,, we can now estimate its general-
ization performance, such as its test accuracy. In fact, the theoretical test missclassification of w,, is equal
to the shaded area between the two histograms (intersection) in Figure 1, and since the histograms are of
Gaussian laws, we have the exact formula to compute this desired quantity which we state in the following

proposition:

( )
Proposition 4.3 (Asymptotic test accuracy of wy). The asymptotic test accuracy of we defined in

(a-FTC), under Assumptions 4.1 as the number of test samples nyes — 00, is given by:

+2

1 1 +oo
e 2551~ o (ro —m2) Ama) , where: o) = — [ e Fa,
V21 Js

13
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a=0.1
0.15
0.75
g 0.10
| 0.50
Q.
095 0.05
1.0
o0
S
0.5
Naj
0.0 0 —2 0 Y10 0
wlx WlX wlx

= Theory C; = Theory Cy [ Simulation ¢4 [ Simulation Cy

Figure 1: Distribution of the decision function w/ z for different values of a (per column) and 3 (per row)
for a data model given by: pg = B+ /1 — B2ut. Here we have N = 5000, n = 200, p = 400, ||p|| = 1.5,
|lut| =1, v =4 = 1. The theoretical Gaussian distributions are predicted as per Theorem 4.2.

Therefore, thanks to Proposition 4.3, we now have the exact formula of the theoretical test accuracy
of our classifier w,, which can be used to simulate the dynamics of the test accuracy with respect to
the parameters of the setting (like , 5 and , as it was done in Figure 2), and also to characterize the
expression of the optimal and worst parameters of the model (for instance, the o parameter) to use for the
fine-tuning process. In particular, we will derive the theoretical expressions of the extrema of « that lead

to the best and the worst test accuracies on the target task (proof in Appendix B).

( )
Theorem 4.4 (Optimal «). Mazimizing the term <(I/a - mi)_%ma> in terms of « leads to optimum

test accuracy iest, and gives a unique maximizer o* given by:

« _ ArD||pgl” — 28971 (1 + dg) [l l®
BYTa(1 4 6Q) > — 2ARTs| ps]|?

Plus, solving (v — mi)_%ma = 0 leads to the unique minimizer & of &est, which is given by:

Arlps?

= T+ oq)

14
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8=02 8= 8=0.9 _
a" =161 =193
2:0.56 f\ 0.7
g 0.60
£0.54
< . 0.6
- 0.55
% 0.52
B
0.50 a=—141 0.50 a=—0.56 0.5 ,a=—0.31
—10 0 10 —10 0 10 —10 0 10
o e !
— a-FTC No-FT (o = 0) ¢  Optimal o o a=1

Figure 2: Theoretical Test Accuracy variation with « for N = 5000, n = 40, p = 1000, and the theoretical
model is modified to take 8 in (0,1): pg = Bu + /1 — B2pt, where |p|| = ||pt|| = 0.8. Finally the

regularization parameters are: ¥ = 2 and vy = 1071

Theorem 4.4 gives us the exact expression of the

5‘ 1
optimal scaling parameter a*, which we can exam- ) = 8'(1)1
77 =
ine its dynamics with respect to the other parame- o | — n=10
ters of the considered model. For instance, Figure = 31 n =100
g
3 clearly depicts the non-trivial contribution of the & 21
)
dimension p to the choice of a. It is clear that a* 1
is non-decreasing with the alignment 3 between the }
. : 01
source and target tasks, but its effect gets amplified 00 02 01 06 03 10
with the dimension p of the problem. Notably, the p

influence of « is more pronounced in low-resource Figure 3: Variations of the optimal parameter o* with
settings (p > n) compared to cases where sufficient respect to the alignment between the source p and
fine-tuning data is available. This further under- target pg dataset means. These latter were chosen of
scores the crucial role of « in effectively leveraging norm 1, N = 2000, n =200 and v =% = 1.

the pre-trained model and source data. Additionally, as 8 — 0, we also remark that o — 0, which means

that fine-tuning has no added value when the source and target tasks are unrelated and orthogonal.

Additionally, Figure 2 shows the evolution of the theoretical test accuracy with the parameter « for different
source datasets (i.e, different alignments ). In particular, we observe the existence of an optimal parameter
o* that is generally different from 1 (standard approach), and as can be previously anticipated, its impact
on the test accuracy is more visible in the case of a higher alignment factor 5, which means in this case

that we highly leverage the base model to better generalize on the new task (see Remark 3.2).

4.3 Theoretical performance with arbitrary source classifier

We can also extend our previous results in the case of an arbitrary source classifier @ (instead of Ridge),
which gives us an analysis of our method in the case where we don’t have access to the pre-training data. In

fact, we assume here that we don’t know the distribution of the source data, and thus the alignment term
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4 Main Theoretical Results

B will be defined differently, and in this case, it is given by the dot product between the source classifier
weights w and the target data mean pg, i.e § = (w, pg). We will show in the following that we get the
same observations and insights as of the previous section.

Under the same assumptions 4.1, we state our main theorem of this section which also describes the
asymptotic distribution of the fine-tuned classifier in this setting.

Theorem 4.5 (Gaussianity of the fine-tuned model for an arbitrary w). Let w,, be the fine-tuned classifier

T
«

as defined in (a-FTC) and suppose that Assumption 4.1 holds. The decision function w, x, on some test

sample x € €, independent of X, satisfies:

w/!x Z, N ((=1)Ma, Vo —m3)
where:
_ llesl? + av(1 + dg) (w, ps)
[psl* + 1+ (1 +dq)
Vo =T1 + aTh +C)é2T3.
with:
sl [ llpesl® +1 1—h
T = —21-h))+—=
T Thag A0 L= )+ =5
29(1 + ) (w, ps) (sl +1
T = —(1—-nh
2 h>\Q )\ ( ) )
2(14069)* ((w,pg)> 1—h, _ 1 — h)(w, pg)? 2
h )‘Q nAQ AQ

The new alignment term S quantifies how well is the source classifier performing on the target domain,
in the sense that larger values of |(w, ug)| essentially mean that @ can better classifies the target data,
which justifies the choice of this metric as an alignment measurement. By examining the contribution of
this term in the expression of m, and v, in Theorem 4.5 and by looking at the dynamics of o* (which will
be defined later) with respect to it as in Figure 4, we observe that this new alignment term operates in the
same way as the previous 8 defined in the case of a known source data distribution.

Again, thanks to Proposition 4.3, we have the theoretical formula of the test accuracy of this new fine-tuned
classifier w,, which we can use to compute the optimal parameter o* that maximizes the test accuracy,

which is the object of the following theorem 4.6.

( )
Theorem 4.6 (Optimal « for arbitrary w). Maximizing the term ((Va — mi)féma> with respect

to a leads to optimal test accuracy st and gives a unique mazimizer o given by:

. n(1+ (L + 89)){ab, pr5)
YT+ 60) (Mrsa P — (X — )b, pus)?)

Solving mq = 0 leads to the unique minimizer & of et which is given by:

(07

—llpsll?

&= S+ 00) (b, ps)
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5 Experiments

Similarly, for the arbitrary classifier w, we ob- 200 — 5 =0.01 [
serve the same scaling behavior of the optimal pa- s n=01
rameter a* with respect to the alignment term. No- S
tably, the influence of « is more pronounced in low- é 1.04
resource settings (p > n) compared to cases where S: 0
sufficient fine-tuning data is available. This further J
underscores the crucial role of « in effectively lever- 0.01
aging the pre-trained model and source data. 0.0 0.2 0.4 0.6 03 10

- T
w
Therefore, we have shown in this whole section that o 5]

adding a scaling parameter to the base model helps Figure 4: Variations of the optimal parameter o* with

better leverage the source task in Transfer Learn- respect to the alignment between the source classifier

ing, though needs to be carefully chosen. w and the target dataset mean pg. These latter were

chosen of norm 1, n = 200 and v = 1.

4.4 Conclusion of our theory

The theoretical framework developed in this section provides precise predictions on how the scaling param-
eter a influences generalization in transfer learning. In particular, the Random Matrix Theory analysis
reveals a non-trivial optimal o that depends on alignment between source and target tasks and the di-
mensional regime. To verify whether these analytical insights hold in practice, we now turn to empirical
validation. In the next section, we test our predictions on both controlled linear models and complex

real-world fine-tuning scenarios such as Large Language Models (LLMs).

5 Experiments

In this section, we present some experiments on real datasets to validate our approach and prove the
effectiveness of scaling the base model. We start by fine-tuning linear models on the Amazon Review
dataset (Blitzer et al., 2007) to verify our theoretical findings. After that, we formalize our new class of
reparameterization methods and verify its efficiency by experiments on fine-tuning LLMs on the GLUE
benchmark (Wang et al., 2018).

5.1 Within our theoretical model: Linear Binary Classification

Here we present our experiments on the Amazon Review dataset (Blitzer et al., 2007) to validate our theory.
This dataset includes several binary classification tasks corresponding to positive versus negative reviews
of books, dvd, electronics, and kitchen. We apply the standard scaler from scikit-learn (Pedregosa
et al., 2011) and estimate |||, |2 || and B with the normalized data. Figure 5 depicts the variation in test
accuracy of three transfer tasks with respect to the parameter o and gives a comparison between the three
main schemes: o = 0 (i.e., learning directly on the target data without using previous source knowledge),
a =1 (classical approach) and with the optimal a* obtained using the theoretical formula in Theorem 4.4.

Depending on the tasks, we see a clear improvement in the test accuracy for a* compared to the other
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> ’ 0.8
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Figure 5: Test accuracy variation with « for different transfer learning schemes from the Amazon Review

dataset (Blitzer et al., 2007). The considered parameters here are:

and 7 = 2.

schemes, which further highlights the impact of this scaling parameter.

obtained for all the possible transfer tasks between the sub-datasets.

N = 2000, n = 40, p = 400, v = 107!

Table 1 summarizes the results

Table 1: Test accuracy (in %) comparison over Amazon review datasets (Blitzer et al., 2007) for N = 2000,

n = 40, p = 400, and optimal regularization parameters v = 4 = 1. As theoretically anticipated, our

new fine-tuning approach yields better classification accuracy than training directly on the target dataset

(o =0) or using @ = 1. The results were computed for 3 random seeds.

Source Dataset ‘ Target Dataset a=0 a=1 Optimal o*
Books Dvd (8 = 0.8) 64.12 £ 0.03 | 75.67 + 0.24 | 77.35+0.14 (o* =2.47)
Electronics (8 = 0.71) | 68.61 £+ 0.74 | 76.65 £ 0.02 | 77.12+0.17 (o* = 1.68)
Kitchen (5 = 0.79) 69.24 + 0.95 | 78.19 + 0.05 | 78.96 +£0.26 (a* =1.9)
Dvd Books (8 = 0.78) 63.43 £ 0.67 | 75.22 + 0.24 | 77.59 +0.07 (o* = 2.47)
Electronics (8 = 0.71) | 68.61 + 0.74 | 76.72 £ 0.17 | 76.88 +0.42 (o* = 1.69)
Kitchen (5 = 0.78) 69.24 + 0.95 | 78.11 + 0.23 | 78.72 £0.54 (a* = 1.88)
Electronics Books (8 = 0.51) 63.43 £ 0.67 | 722+ 0.1 73.29 £0.13 (a* =1.67)
Dvd (8 = 0.52) 64.12 + 0.03 | 72.41 + 0.16 | 73.48 £0.17 (a* = 1. 69)
Kitchen (5 = 0.9) 69.24 + 0.95 | 81.58 + 0.15 | 83.02 £ 0.1 (a* = 2.29)
Kitchen Books (8 = 0.52) 63.43 £ 0.67 | 72.86 £ 0.1 | 74.27+0.14 (o* =1.84)
Dvd (8 = 0.53) 64.12 + 0.03 | 73.15 + 0.08 | 74.15 4+ 0.09 (a* = 1.82)
Electronics (f = 0.83) | 68.61 + 0.74 | 80.14 £+ 0.02 | 81.89 +0.18 (a* = 2.31)

We note that our approach yields optimal results for all transfer tasks, which clearly validates our

theoretical results and underscores the efficiency of our method in terms of its generalization capabilities.

This can also be observed in Figure 5, which shows that the optimal test accuracy is obtained for a

parameter « that is not necessarily equal to 1.

18



5 Experiments
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Figure 6: Test accuracy evolution of roberta-base finetuned on MNLI and RTE for a single fixed seed
(seed 5 for MNLI and seed 123 for RTE).

5.2 Beyond our theoretical model: Supervised Fine-tuning for LLMs

To go beyond linear models, we now fine-tune language models, specifically the roberta-base BERT model
(Liu et al., 2019)), on downstream classification tasks taken from GLUE tasks (Wang et al., 2018). To
adapt our theoretical insights from the linear model to complex multi-layered architectures like LLMs, we
generalize the scalar scaling parameter a to a vector «, i.e applying a scaling parameter to each output
dimension of the target module. This extension provides finer-grained control, allowing the model to rescale
the contribution of the frozen base weights on a per-output-neuron basis. This added flexibility is crucial
for capturing the intricate functional specialization within different dimensions of a neural network’s hidden
states. Consequently, the update rule for a weight matrix W* is modified from a simple scalar product to

a row-wise scaling operation, as detailed below:

Wiew = a © W* + W (10)

where ® is the element-wise product between vectors, W* € RoutXdin ig the original layer weights (frozen
during training), o € R%u (each element in the output dimension is then multiplied by a scalar), and
W e Réout*din is the trainable weight matrix. This generalization from a scalar a to a vector is adequate
with our theoretical study in the previous section since the weight matrix W* is comprised of d,,; vectors
(rows), and thus a scalar « is applied to each row. Additionally, to further make our fine-tuning method
lightweight, W can be approximated with a low-rank matrix: W = AB, where: A € R%utX" and
B € R™*9%n_ a method that we call a-LoRA. We then report in Table 2 the test performance obtained
using standard LoRA and our a-LoRA method evaluated on six GLUE tasks: MNLI, QNLI, MRPC, RTE,
SST-2, and QQP.

We note that from Table 2 and Figure 6, our method leads to higher generalization performance
compared to standard LoRA across all GLUE benchmarks, which further validates our theoretical findings

of the previous section, and proves the usefulness of scaling the base model weights.
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Table 2: Test accuracy comparison over GLUE classification tasks (Wang et al., 2018) using roberta-base
model. As theoretically anticipated, our new fine-tuning approach yields better test classification accuracy

than the standard LoRA method (a = 1). Details about these experiments are presented in Appendix F.

Method | MNLI QNLI MRPC RTE SST-2 QQP
LoRA | 8577 £0.16 | 91.95+ 0.03 | 88.40 = 0.31 | 74.01 +1.64 | 94.00 + 0.11 | 88.80 % 0.02
a-LoRA | 86.12 + 0.06 | 92.20 + 0.13 | 89.46 + 0.53 | 77.62 + 0.59 | 94.38 + 0.01 | 88.86 + 0.03

Finding the parameters a. We designed a practical heuristic algorithm to automatically update o
during training. In fact, we consider each vector a as a trainable parameter and update these vectors once
every T step (tunable hyperparameter) by sampling a new batch, different from the one used to train the
reparametrization weights W, and then taking a gradient step over this new batch with either Adam or

AdamW. The full pseudo-code of our algorithm is given by the following.

Algorithm 1 a-LoRA FINE-TUNING
Require: Base model weights {W?}¥,, fine-tuning dataset 2 = {Bj}?zl divided into batches, update

period T, optimizers optim (for LoRA modules) and optim_alpha (for a = {;}Y ), number of epochs
n.

1: fork=1...ndo

2:  for batch B; in Z do

3 Update LoRA modules {(4;, B;)}Y, with a gradient step on B using optim.

4 if j mod T'= 0 then

5 Sample a fresh batch B, from &

6: Update o with a gradient step on B, using optim_alpha.

7 end if

8: end for

9

: end for

The design choices of our algorithm can be justified by the following;:

e Because the vectors a applied to each module lie in the whole Euclidean space R?, it is not possible
to find such a parameter through a simple grid search, as this will give a very costly and impractical

algorithm.

e Additionally, finding theoretical formulas for each vector « is very hard, if not impossible. Therefore,

it is crucial to have an algorithm that updates the vectors a automatically.

e Finally, because we want to optimize the generalization performance of our fine-tuning method,
training o in the same way as the reparametrization weights W can easily lead to overfitting of the
model, which justifies sampling of new batches to update a and the update rate 1. Our specific

choices are detailed for reproducibility in Appendix F.
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Figure 7: Test accuracy of roberta-base finetuned on RTE for different values of a in the neighborhood

of the obtained a*. The values of the parameters a* in this experiment range between 0.85 and 1.14.

Figure 7 shows that our algorithm leads to optimal scaling vectors a* in their neighborhood, which proves
the effectiveness of our algorithm and the fine-tuning method in general. The pseudo-code 1 of our algorithm
is detailed in the Appendix F.

Overhead induced by the additional parameters a. We note that the number of additional train-
able parameters a induced by our algorithm 1 is negligible compared to the standard approach (fixed
a = 1), for example in the case of our experiments with roberta-base model, the increase in the number
of trainable parameters is only of 0.02%. Additionally, investigating the resulting values of these learned
«a vectors as reported in Figures 8, 10 and 11, we notice that we get similar values for query and value
matrices, thus we can use a shared parameter for both weight matrices (or for the whole attention module

more generally), reducing the overhead even further.
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Figure 8: Statistics of the vectors o for the MNLI benchmark
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6 Multi-source Transfer Learning

6 Multi-source Transfer Learning

Building on the single-source formulation, we extend our theoretical framework to multi-source transfer
settings, where multiple pre-trained models contribute to a single target task. This setting is increasingly

relevant with the rise of mixture-of-experts and multi-domain pretraining.

6.1 Asymptotic distribution of the test

In this section, we present an extension of our theoretical work of section 4 to the case of Transfer Learning
using multiple source classifiers. Given T source classifiers {w;}2_; and a single target task, the goal is
to fine-tune a mixture of these classifiers on the target task. Specifically, we want to find the optimal

fine-tuned classifier wq that is written as:

T

wq = E oW + a
t=1

where a; € R and a is an adapter trained on the target dataset as follows:

T
1
a = argmin,, EHXT( g awy +v) — y|I* + y|v|?
t=1

Then, a expresses as:

1/1 -1 T
a=— <nXXT + 7Ip> (Xy —XXTY atwt>

t=1

Thus, our new fine-tuned classifier writes as:

T T
1
wg =) amw; +a=—QXy+7) aQu, (11)
t=1 t=1
Using the same RMT tools, we establish the asymptotic distribution of the decision function of the classifier
myg for an arbitrary test sample  ~ A" ((—1)%pg,I,) in the following theorem.

Theorem 6.1 (Test performance for multi-source transfer learning). Let wgq be the multi-source fine-tuned
classifier as defined in (D) and suppose Assumption 4.1 hold. The decision function wgw on some test

sample © € 6, independent of X for arbitrary source classifiers wq, ..., wr, satisfies:

wx EN4 ((=1)*mgq, vo —m%z),

where:
T
sl (4 60) S )
[psl® + 14+ ~(1+dg) ’
vo="1T1+15 +Ts.
with:

lpzsll® (sl +1 1-h
T = —21-h) )+ —
" Thag Ao 1=m)+=
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T

2
T, = +5Q Zat <”N‘5H +1 (1 _ h)) <wtaljlﬁ>
t=1
A +5Q)
T
(wi, pg) (W, pg) 1 (wi, pg) {wi, pp) psll®
2o Ty AP O 2)>]

Theorem 6.1 gives the distribution of the fine-tuned classifier obtained through a mixture of many source
models. This latter will be very useful to characterize the optimal scaling factors that can be used to

maximize the transfer generalization capabilities.

6.2 Characterization of the optimal scaling factors

We now use Proposition 4.3 to characterize the extrema scaling factors {a;}7_,, but beforehand, let us
write the first and second order moments mgq and vq in vectorized forms in order for a better readability
of the results.

Denote by a = (a¢)1_; € RT and the matrix of source classifiers: W = (wy, ..., wr) € RP*T. Then, the

quantities mq, To and T5 write as:

_ (sl + (1 + 6) "W T pg)

12
1s]12 + 14+ (1 +6g) .
27(1 241
7= 20 %) (luslPHL a W g (13)
hXg AQ
2 1 2
Ty = MaTMa (14)

h

Worst scaling factors. Finding the worst scaling factors (that lead to a test accuracy of 50%) boils

down to solving the equation mg = 0, which in turn leads to the following condition:

sl

—T T
a W pug=——"-—
7T (1 + 6g)

(15)

which also means that:

aw+ 1

Best scaling factors. The theoretical test accuracy writes as follows:

a1 + aTvl
Fhest (@) = =
© Vas +aTvy + aTMa

where:
s V(1 +0Q) <x,T o el (sl +1 fwsl®*  2(1—h) 1—h
— 1=AN = =T TR =T —a? = _ _
RV Ao He, 2= AT =T hg Ao h T
146 241 2 2 1-h
v2:( ' Q) (!uﬁll ~ 2[lpsll® >WT“5’
o hho A0 h
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7 The case of regression: fine-tuning a weight matrix

2 2 2

- (1 +0)*(A—h) (1 T 1 L (psll T TwT

M = “WIW A [+ —— —2) | W W
h " g e Uig Hoks

And therefore, since ¢ is non-decreasing, maximizing this test accuracy boils down to maximizing the term
inside it, i.e we want to find a* that satisfies:

a1 + aT'vl

Vas +aTvy +aTMa

o’ € argmax,, = arg max,, g(a)

We compute the gradient of g with respect to a to find the extremum values of these mixing parameters:

1)2+2Ma
\/GQ +aTvet+aT Ma

\/ag +aTvy + aMa v; — (a1 + o' vy)

Vagla) = =
ag(a) as +alve + a'Ma

Thus the roots a of Vg(ax) satisfy the following equation:

(ag + o' vy + ' Ma)v; — (a3 + a'v;)(v2 + 2Ma) = 0

We summarize these findings in the following theorem:

Theorem 6.2 (Optimal « for the mixture of source classifiers). Under Assumptions 4.1, the optimal

scaling factors o = (o, ..., a7)T satisfy the following identity:
(a2 + a' vy + aTMa)vl — (a1 + aTvl)(vg + QMa) =0
Whereas the worst coefficients satisfy:

s
v(1+dq)

G J

aTWTug =—

We next show that similar principles hold in continuous-output settings such as regression, suggesting

that a-scaling reflects a general statistical phenomenon rather than a classification-specific artifact.

7 The case of regression: fine-tuning a weight matrix

Let consider now analyzing a linear regression task where the finetuning process is done using an adapter

matrix (instead of vector), which is described by the following setting.

Source task. Assume we are given a source regression dataset {(Z;, 9;)}¥, such that there exists W €
R4*P;
&~ N (0,1,), 9 =W+ 2 €RY where: 2 ~ . A(0,5°1,) (16)

Target task. Now we want to learn a target task characterized by a matrix Wy. In fact, we consider

having a target dataset {(x;,y;)}" ; defined as:

@i~ N (0,1,), vyi=Wx;+2z R where: z; ~ A(0,0%1y) (17)
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7 The case of regression: fine-tuning a weight matrix

Again we denote by: X = [x1,...,2,] € RP*" and Y = [y1,...,ys] € R We want to learn such
target task by considering weights of the form: aWjg + A such that A is learned from the target data by

minimizing the following loss function:

. N
min £(V;X,¥) = min -3 [(@W, + Vi~ i3 + VI (18)
i=1
Where ||.|| denotes the Frobenius norm of a matrix. The gradient of the loss function with respect to V
is given by:
2 — T 2 T 2 o7
VL(V) == > (aWe+ V)z; —yi) @] +29V = ~(@W,+ V) XX = =YX + 9V
i=1

Thus, the minimizer A of the loss function .£ (V) is given by:
1 T [} T
A=-YX Q- -W,XX Q (19)
n n
where:
1 -1
Q= (XXT - 71,,> (20)
n
Finally, the fine-tuned regressor is given by:

1
W, =aW, + A = EYXTQ + ayW,Q (21)

To evaluate the efficiency of this fine-tuning process and showcase the impact of the parameter «, we can

compute the theoretical test error of this regressor defined as follows:
Eiest = E [HWO@ - y||2] (22)
for test samples (x,y) independent of the training set. Denote by:
A=1+~(1+4+9)

The following theorem gives the theoretical expression of the test error of the fine-tuned regressor W,.

( )
Theorem 7.1 (Theoretical test error.). Under the high-dimensional regime, i.e £ — n € [0,400),

the theoretical test error of the fine-tuned regressor W, defined in (22) is given by:

Eiest = Ty + oTy + o?Ts,

where:
T = (;_13]2 Tr(W, W) + (;zz'd‘i
=24 ;52 (?17 —N mvow,wT)
Ty = W Te(W,W])
L )
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7 The case of regression: fine-tuning a weight matrix
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Figure 9: Test risk variation with « for a transfer learning setting starting from a fixed (random) source
regressor Wy to a target task of the form: W; = BW,+W 2. The considered parameters here are: n = 20,
p=200,d=4,7v=10"2and ¢ = 0.5.

The proof of this theorem is presented in Appendix E. In particular, we can easily derive the optimal

« to use in the fine-tuning process which we present in the following theorem.

( )
Theorem 7.2 (Optimal regression a*.). Under the same assumptions of the previous theorem, the

optimal o that minimizes the theoretical test error Fies of the fine-tuned regressor is given by:
LA
Tr(W,W/])

. J/

Again, the proof of this theorem is provided in Appendix E. We remark here for instance that the
optimal parameter a* does not depend on the dimensionality of the problem, nor on the number of
fine-tuning samples n, which is an interesting and unexpected property that was not observed in the
previously studied classification setting. Additionally, a* can also be interpreted as a normalized alignment
score between the source and target tasks. In fact, we know that the Frobenius dot product between two
matrices A and B is given by: (A,B) = Tr(AB"), hence: o* = %
tuning parameter « to choose is exactly the alignment score between the source and target tasks as defined

Therefore the optimal fine-

earlier in (6) This is further shown in Figure 9.

Estimating «o*. From our derivations in Appendix E, we can derive a consistent estimator of a*. In

fact, for any source samples (Z1,91) and (&2, 92), and target samples (x,y), we have that:
E[g{ yz' &) = Te(W,W,]), E[g] go22g 21] = Tr(W W)

Therefore:

E[g) 922, 1]

*

And therefore, we can deploy Monte Carlo methods to estimate these two expectations.
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7 The case of regression: fine-tuning a weight matrix

Conceptual reflection. This work reframes fine-tuning as a problem of balancing knowledge transfer
rather than merely parameter adaptation. By introducing a scaling parameter that explicitly governs
the contribution of pre-trained representations, we provide a theoretical and algorithmic mechanism to
control how prior knowledge is reused. This interpretation connects transfer learning to broader principles
in optimization and statistical physics, where equilibrium between old and new information determines

generalization.
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8 Discussion and Conclusion

8 Discussion and Conclusion

In this thesis, we introduced a new theoretical and algorithmic framework for fine-tuning pre-trained
models through an additional scaling degree of freedom. By reparameterizing the adaptation process with
a learnable scaling parameter, we demonstrated—both analytically and empirically—that fine-tuning can
achieve superior generalization compared to standard low-rank approaches such as LoRA.

Our Random Matrix Theory analysis revealed the existence of an optimal scaling factor that minimizes
generalization error in high-dimensional transfer settings. Interestingly, this optimal value is often distinct
from the conventional scaling (o = 1) used in prior work, providing a rigorous theoretical justification
for adaptive rescaling during fine-tuning. The theory not only yields interpretable expressions linking «
to alignment between source and target tasks but also extends naturally to multi-source and regression
frameworks.

Empirically, our proposed a-LoRA method consistently improves performance on benchmark trans-
fer tasks and LLM fine-tuning experiments, supporting the theoretical predictions. This dual valida-
tion—mathematical and empirical—underscores the relevance of RMT-based analysis for guiding fine-
tuning design.

Nevertheless, our study also highlights several limitations. The theoretical results rely on simplifying
assumptions such as Gaussian data distributions and linearized architectures, which do not capture the
full complexity of modern deep networks. Future work could aim to: (i) relax these assumptions to handle
more realistic data and architectures, (ii) develop efficient estimators for « in large-scale scenarios, and (iii)
explore synergistic combinations of a-scaling with other advanced adapter techniques (e.g., DoRA, MoRA,
or LoRA+). Beyond methodological extensions, an intriguing avenue is the use of some theoretical tools
(in addition to RMT) tools to predict fine-tuning dynamics or to design other adaptive algorithms that
automatically adjust o during training.

In summary, this work takes a first step toward a principled, theoretically grounded understanding of
fine-tuning, bridging Random Matrix Theory and practical transfer learning. We hope it inspires future
research into interpretable and mathematically guided adaptation mechanisms for large-scale learning

systems.
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A Useful results

Supplementary material
Notations. Here are two notations that we will use along the whole analysis:

Ao = llmsl® +1+7(1+68q), Ar=[pl*+1+3(1+dr) (24)

A Useful results

A.1 General lemmas

Here we will list useful lemmas used in our analysis.

Lemma A.1 (Resolvent identity). For invertible matrices A and B, we have:
A'-B'=A"'B-A)B L

Lemma A.2 (Sherman-Morisson). For A € RP*P invertible and u,v € RP, A +wuv' is invertible if and
only if: 1 +v A~ u #0, and:

A lyv AT
A Nl a1 _ 2 77 =
(A+uv) 1+vTA 1y
Besides,
A1y
T\-1,, _
(Atuw ) u = Ty

A.2 Deterministic equivalents

Recall the expression of the resolvents defined in equation (9):
1 ! 1 !
T T | =
We define the matrices Q_; and R_; as the resolvents obtained by removing the contribution of the i

sample, i.e:
-1 -1

1 T 1 ~ ~T ~
Q.= - E A:L'kmk +7I, , R_;= N E ‘:nka:k +9L,
k#i k#1

then we have that: 1 1
Q= (Q—% o] ) . R= <R‘3 i )

Thus by Sherman-Morisson’s lemma:

1 - =T
Q-Q.i- lQﬂ'ﬂviﬂUIQﬂ" R-R_,_ ~vRoiziz, R
n 1+ 69 1+40p
where:
1 g1 — 1214 1~ f—5-1 75— 1)2 + 47
b= Qo177 SaVA R R Dk /S NS SO el el o VA G Bl ) Al 1
n 2y N 27
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Thus, we get that: B
_ Q ix; . _ Rz
1+ 6’ " 146g

Using the above identities, we can easily prove the deterministic equivalents of Q and R stated in Lemma

Qx; (25)

3.6, which we will do in the following.

Lemma A.3 (Deterministic equivalent of Q and R). Under the high-dimensional regime and the assump-
tions 4.1, a deterministic equivalent for Q = Q(v) and for R = R(7), denoted Q and R respectively, as
defined in (9) are given by:

- pors +1 o pp +1 -
Q) =|(—F75—+"| . RO= <p +71p> :

1+5Q 1+ 6g
Where:
1~ p—y—1 —y 12 +4 1o o i—A—14+ =7 - 12+ 4
PSS NP S Rt e VA Ul S SR O S SO e Rt e VA U S G/
n 2y N 2y

Lemma A.4 (Trace identities). Let Q,R € RP*P be the deterministic matrices defined in lemma 3.6.
Then:

1Te((25Q)%) _ U 1 Tr((XR)?) U

n (1+6g)? (1+~v(1+46g))?2" N (1+6g)? (14+5(1+6g))2%
And:

(14 6r)(1+dg) )2
)

1 oy
N THRQY) =1 <(1 + 31+ 6r)) (1 + (1 + g

Lemma A.5 (Relevant Identities). Let Q, R € RP*P be the deterministic matrices defined in lemma 3.6.

Then we have the following identities:

. (1 +60)l s - < (1 + 60)| s >
Qup = , Q =
Ho b = TuslP+ 1141100 M=M= \mslP+ 1+ (1 +d0)
_ 1+ o) | lf? ] (+op)u]  \°
TR — ( - 5 TR2 = ~ 9
B a1+ +0m * T HT\uE+ 1430+ 0n)
__ 1+ 6R)(1 + 60) 8|2
TRQ — (~ ,
BB = P+ 1+ 30+ 60) (sl + 1+ 7(1+ 0g))
TH A2 (1+6R) < (1+6g) >2 2
RQ = = B ,
e RQ s = o T A T o) \ (a2 + 111 sg)y ) PI#
And finally:
' RQ*Rpu

< (1+0r)(1 +0g) [k )2 <1+ Bl _ 26|l )
(I +(1+ ) ([pl* +1+5(1 + 0r)) (sl +1+~9(1+60))*  llwsl*+1+~(1+6q) /)
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Proof. The proof of all these identities relies on the following results:

pp' 1 -
R= 4+ —— )1
<1+5R+<7+1+5R> p>

= (1+0R) (uuT +(1+5(1+ 5R)Ip))_1

_ 1+49dg ( pu’ +I)1
1+5(1+6g) \1+~(1+6g) P

1+0g ( pp’ )
=—— (I, — _ lemma A.2
T30+ 60 \7 " TP+ 1450+ on) ( )

where the last equality is obtained using Sherman-Morisson’s identity (lemma A.2). Hence,

~v2_  (L+0r)? (pp')? B 2pp”
(R"<r+w1+&m2(p+qu+1+au+amP nuw+1+au+am>'

And the same for Q:

Q- l+ie - Bty
14+ +60) \™"  lpsl? +1+7(1+0dg) )’

S T ) -

(14 60)? (mppey)? 2ppp
Pr(lpsl? + 1+ v(1400))2 sl +1+~v(1+6q) )

And using the second identity in Sherman-Morisson’s lemma A.2:

(1+(5R) _ (1—|—5Q)

R = = s —
PR i s0 o™ YT Py (1 o

m
) B
O

Lemma A.6 (Expectation some classifiers). Let w and w be the classifiers defined earlier (a-FTC). We
have that:

- 1 = 1 -
Proof.
L
Elw] = ;E[ﬂz‘RIEz‘]
N
1 1
= — ElgiR_;z;
N ; 1+ o5 LR
1
= R
1+49dr a
The proof of E[w] is similar to this latter. O
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Lemma A.7 (Deterministic equivalent). For any positive semi-definite matriz A, we have:

1 Tr(35QAQ)

and: 1T (ERAR)
r

In particular for every a,b € RP:
1 +- = )
TE[QZsQlb = EaTQEﬁQb, a' ERXR]b = ZaTRERb.

Proof. The proof is derived similarly as in the appendix of Firdoussi & Seddik (2024). Again, the proof is
similar for both Q and R.
Let Q be a deterministic equivalent of Q. The following equations and identities are valid in terms of

linear forms. We have that:

E[QAQ] = E[QAQ] + E[(Q — Q)AQ]
QE[AQ] + AE[Q - Q]) +E[(Q — Q)AQ]
QAQ +E[(Q — Q)AQ]

Using lemma A.1, we have that:

_ Y loeT\A
-a(y, - o)
:Q(S—lXXT>Q

n

Thus:
ElQAQ) = QAQ + E[Q(S - - XX)QAQ)
= QAQ + E[QSQAQ] - - 3" E[Quiz] QAQ)]
=1

We have that:

EQz;z; QAQ] = 5 EQ_iz;z; QAQ]
o Taa QT Qo
<E —i L, QQ ] [szwzwz QA n(1+5Q) ])
o TA Q—iwimiTQ—i
Q (E Q—zZBQAQ—z] - [Q—zwzmi QA n(l +6Q) ])
(E Q¥QAQ) - E[Q imi; QAW])
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Therefore, by replacing the obtained expression of E[Qz;xz; QAQ] in the equation of E[QAQ], we get
that:

E[QAQ] = QAQ + W ZE Lxix] QAQ iz Q]
=QAQ+ W Z Tr(Z5QAQ) E[Q-iziw/ Q-]
= QAQ+ m ZTr 23QAQ) E[Q_i¥5Q i
- QAQ+ ;W E[Q¥;Q)
Which finally concludes the proof. 0

Now we will provide the result of a useful quantity that we will be using for computing the variance.

Lemma A.8 (Expectation of @' Aw). Let A € RP*P be a random matriz independent of w. We have
that:

[T Ad] = (1;;@2 (,ﬁ ERAR]u — N(liém T(SERAR]) Ry + ;Tr(zE[RAR]O
Proof. We have that:
N
Elw'Aw] = % > Elig;# RARE,]
ij=1
1 1 X
= 7 2 Eliiij# RARE;] + =5 > El#/ RAR%]
7] i=1
We have for i # j:
E[5:7;% RARZ;] = (Hlémg E[j;§;#R_;AR_;Z;]
1 - =T o
= (1“‘2@2 E |§i§;2 (R—zy NR—iljf_j:; R—%’j) A (R—ij _ ]{fR—iljf_ii;i—R—ij> ij]

=A —Ap—Ais+ Al

So let us compute each term independently:

1
(1 + 5R)2
_ 1
BN Sl

An = E[5:7;&; R-i;AR_;;&;]

TE[RAR]u
And :
1

~ ~ ~T ~ ~T -~
Ajp = mE[%iji R_jjAR_;;&;%; R_;;T;]
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! = oo T _
- m Tr(XE[RAR]) E[yzijl R,ija:j]

1 _
= X107 Tr(SERAR])) 1 Ry

And also we can easily observe that:
Az = A, Ay =0(Nh.
Thus:
E[g:7;%; RARZ;] =

2
.
E[RAR]p —

p E[ In =

N0 160 Tr(Z IE[RAR]);LTRH>

1
(1+46R)? <
And for the second term in the equation of E[wAw]|, we have:

1

(1 + (53)2

1 - T
= —— E[Tr(z;z;, R_;AR_;
(1+6R)?2 [Tx(:2; ' )

_ (ng Tr(E[#&, | ER—AR_,))
_ (1+16m2 Tr(X E[RAR))

E(z{ RARZ;] = E[#] R_;AR_;,]

Hence, finally:

2
E[w' Aw] = 5 (/J,TIE[RAR]N— ~

_ 1
(1+0g)? N(L+0n) Tr(SERAR])p' Ry + - Tr(S E[RAR]))

O

Lemma A.9 (Commutativity). Let R and Q be the resolvent matrices defined in lemma 3.6. We have
that:

QX5 =35Q, RE=3R.

Proof. We will just prove it for Q and Y3 because the other proof of the second identity is similar. We
know that:

S5 = (1+0)(Q™" —1,)

Thus:

Qs = (1+60)Q(Q " —1I,) = (1+60)I, —1Q)
35Q = (1460)(Q " —11,)Q = (1 +60)(I, — Q)

which concludes the proof. O
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B RMT Analysis of the fine-tuned classifier

Let © ~ A ((=1)*ug,I,) independent of the fine-tuning dataset X. We recall that:
Wo = w + o — ~Q(y)XX 1w,
n

where:

B.1 Test Expectation

We have that:
Ejw, z] = E[w z] + aEjw 2] — > E[w' XX ' Qu]
n

Let us compute each term of this previous sum.

First, using lemma A.6, we have that, since « is independent of X and of X:

O

And we have that:

And:
EXX'Q] =) Ezz/ Q]
=1
:Zn: 2] Q)
— 1+5Q
:Z”: ! Elziz]Q
P 1+5Q
n _
146 5Q
Thus:
1o (-1)* 1 o
R XX = RY
- [w Q] 0500 (1+5Q)u 3Qus
(=1 15 -
= I —
oM R(I, —vQ)us
Finally:
E[w, ] = (—1)* 1l Qus + ———p Rpg — ———p R, — 7Q)us
a 1+0g""° 1+ 0r 1+0p ’
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1 _
=(-1)* | —— R
(=1) <1+5Qu5Qu5+1+5 Iz Q;w)
And using the identities in lemma A.5:

_— (1) ) oy(1 4 60) :
Elwa ] = qL P T 50) (””ﬂ” (ST ) )

= EF (st + 22D )

B.2 Test Variance

To compute the variance of w/ z, it suffices to compute the second moment: E[(w, x)?].

2
2
E[(w] )% = E[(w @ + 0 2)? + (w0 XX Q)? — —b XX Qu(wx + ot z)]
n n

First term: We have that, as proved in (Firdoussi & Seddik, 2024):

1
(1+69)

= 1 1 TO 2 TAH2 TA 1—-nh
" (14 dg) (1 + o0 (WaQHﬁ) +rsQ ua) —2(1 = h)pg QMB) +—

2 241 1—h
i 125l ( 2||HBH + _2(1_h)>+
h(llesll® +1+v(1+6)) \llpsll* +1+~(1+dq) h

L Tav.A TA 1—h
¥ —2(1 — .
(1 +5Qu5Q sQus —2(1 — h)pg Qw) +—

El(w' @)% =

And:

E[(w 2)Y] = E[w " zw ' x|

T

=E[w' zz ]

=E[w ' S50
Therefore by lemma A.8:

E[(w 2)}] = ——— (;ﬁ E[RXsR|p — 2 1 (SE[RXsR])u Ry + = Tr(X E[RX3R)])
(1+9g)? ’ (1+0r) N g N g
And, we have that:
Elw'zw' z] =Elw' zz' @]
= Ew] X5 E[w]
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And since Efw'zw "] = E[w " zw x|, then:

Elw'zw'x] =

1 o Y Tac
(3 op) o BH — gy RQu

and thus:
TR . — . TAD
e RQu = pg QR

Second term: Now let us compute the expectation of the second term in (41):

1 1
— E[(w'XX'Qx)’] = S E[w' XX Qzw' XX Qu]
n n

Lo Taexe T T X T O
= EE[U) XX Qxz XX Qu|
1

== Ew' XX QXX Quw)

=E[@" (I, - 1Q)Z5(I, — 7Q)w]

Therefore, by lemma A.8:

BT XX Q@)Y = ! BIR(L, ~1Q)% (T, 1 Q)R]
Tr(ZER(I, —1Q)Es(I, — 1Q)R]) 2 =
+ N(1+ 0g)? ( B (1+5R)HTRu>

Third term: Now we want to compute 22 E[w ' XX Qz(w'x 4+ aw'x)]. So we have that:
E[w'XX"Qzw z] = E[w]" EXX ' Qzz ' w)
= E[w]" E[XX Q¥ sw]
= E[w]" B[, XX Q5,QXy]
= E[@]" E[(Q " —11,)Q¥5QXy]
(I, = 7Q)EsQXy]
= Elw]" (E[25QXy] - 7E[QEsQXy])

And we have that:

n

E[Z5QXy] = Y Ely:55Qwi]
i=1
n
= m Ely:X5Q—ix;]

n _
T (rag) W
=n(Il, —7Q)us

And:

E[QYsQXy] = Y E[y:QLsQua)
=1
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= _E[yQYsQ iw]

(1+60)
=T faQ) E |y (Qi -~ W) zﬁqimi]
T T 50) (E[y"Q—izﬁQ—iwi] - n(1ich) Ely;iQ-izix, Q—iEﬂQ—iwi]>
= ﬁ <E[Q25Q]u5 - M Tr(Sp E[QZBQ])QNB>
= h(%(;@)QEﬂQMB - n(lh_h)Quﬁ

_ —h_
=n <}1L(Ip —7Q)Qus — 1hQH6>
=n(Qus — %Q%ﬁ)

Thus:

1
“Elw XX 'Qzw'x] =
n

2
Th AL L A2

Let us now compute the remaining term:

1 1
“Ew ' XX'Qxw ' x] = —E[w' XX Qrax W]
n n

= %E[@TXXTQzﬁu”J]
=E[@' (I, —1Q)Zsw]

And again by lemma A.S8:

1 1
“Ew ' XX"Qxw 'zl = —— ' E[R(I, — »

Now let us group all the results as follows.

Tr(SE[R(I, — Q)%R]) (1_( 2 )

———u'R
N(1+0g)? L+ep)t T

Terms without a: There is only one term which is:

1 ~ ~ 1-h
2 T TAH2
=—((2h -1 — ) —
= ravag) (( Jhs Qus — T Qpp ) + —

_ sl < s> +1
R(llpesll? + 14+ v(1+6q)) \llpsll? +1+~(1+dq)

T = E[(wT:r;

—2(1—h)>~|—1;h

Terms in oz There are two: 2E[w 2w z] and 2E[@ ' XX Qzw 'z]:

2
Ty =2E[w'zw ] — ZE[o' XX Qzw' x|
n

2 _ _ A2
TS (H,BRH — s RQp — p R(I, — 29Q + ZLQ2)W3)
_ 2 Tra (1o G
T +opt RQ (L, - Q) s

And using lemma A.5:

- 29(1 + 3q) e —
(P + T+ 30+ 3)) (sl + 1470+ 30D\~ BlllaalP + 1+ 7(1 +35)
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B RMT Analysis of the fine-tuned classifier

Terms in o® : we have three terms: E[(w ' x)?], %E[(@TXXTQZBF} and 2 E[w' XX Qrw ' z]:

T3 =E[(w ' x)% + % E[(w' XX Qx)?] - %E[@TXXTQ:mIJch]

= ﬁlﬁ (ERQXsR] — ERY3QR] + YERQZsQR]) p

Y 2 _ _ _
+ N(1+0g)2 <1 - (1+ 5R)“TR“> Tr (E(E[RQZﬁR] —ERXsQR] + VE[RQzﬁQR]))
~2

- 5R)mfm>  TH(ZERQE,QR])

where the last equality is gotten using lemma A.9.
We also have that:

% Tr(SE[RQZ5QR]) = — Tr(E[CRQEsQR))

E[Tr(X*RQEsQR)]

E[Tr(RERQY5Q)]

Tr(E[RSRQZ5Q))

Tr(E[RER]E[QX5Q))

- L n(RZRQE5Q)

T [P P Py g

1
N
And:

1" ERQY;QR]p = Tr(E[n" RQZ5QRyu))
= E[Tr(Rup RQZ;Q))
= Tr(E[Rup R E[QX;Q))

= %Tr(E[RuuTR}QEBQ)

Thus:

,.Y2

To— —
T h(1+06R)2

- ~ 2 _ 11 N ~
Tr(E[Rup' R|QY l- ———u'Rp ) =— Tr(RERQY
r(E[Rpp R]Q 6Q)+( Aot u) v (RIRQY5Q)
Now remains to compute E[Rup ' R]. For that, we use lemma A.7:

ERup R] = Rup'R + 1 T(®Rup R) E[RYR]

And since we are in the regime of N — oo, then:

1 _
N;LTRER;L = 0N
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B RMT Analysis of the fine-tuned classifier

Thus:
ERpp R] =Rpp R (33)
Hence, T3 becomes:

,.)/2

To— —
T h(1+6R)2

_ _ 2 _ 11 o _
T T
RQYsQRu+(1————u' R -— Tr(RYRQXY
[u Q¥sQRu ( Aot u)hN ( Q¥5Q)
And we also have that:
1 ' RQSsQRu = 1 RQusp; QRu + p  RQ°Rys

~ (W"RQus) + 1 RQ Ry

And:
L HRIRQNLQ) = — TH(R2Q?)
N =)= N
Therefore:
2 _ 2 - 2 _ 11 _ .,
Y T T 2 T 272
Ty = ————— 1—-— =—T 4
S = LS [(u RQus) +4 RQ Ru+< P Ru) Py THRTQ ﬂ (34)

Then using lemmas A.4 and A.5:
2 o 2 o 2 2 _
2l T T 2 Y T
T3= —— R RQ°R 1-— R
S Wi+ o) [<“ Qus) +1RQ “} MCETSE < i+t “>

_ +5Q)2[Hu\l2 B lul® 1 o1 771 e )
h A2, Ny (L+(1+6g)) 2 Ao

i ( _2||u||2>}
A+ +6PA+A0+0R)P ' A
2 1 5 2 2 2 2 1—h 2 2 2 2 2 2 _ 9 2
B [ng (/3 Lg” . <1+/J’ ’N}\\%Wﬁ” 2Pl (1_ I )))]

n AQ R
Finally:
sl [ Nlesll® + 1 1—h
T = —-2(1—-nh — 35
"7 o o =m)+= (35)
29B(1+46 2 1+
7, - 20+l (| A(1+3) .
ARAQ hXg
2 146 2 2 2 2 1—h 2 2 2 2 2 2 _ 9 2
gy PR [t (Pl 1o, Plallial? 2P0 g (2
h Ah /\Q n )‘Q AQ AR
(37)
And the expression of the second order expectation reads:
E[(w, z)?] = T1 + oTs + o*T3 (38)

And finally, Theorem 4.2 follows:
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C RMT analysis for arbitrary source classifier

Theorem B.1 (Gaussianity of the fine-tuned Ridge model). Let w, be the fine-tuned classifier as defined
in (a-FTC) and suppose that Assumption 4.1 holds. The decision function wl:c, on some test sample

x € 6, independent of X, satisfies:

where:
1 afy(1+dg)
o = 5 (sl + 21 g
Q R
Vo =11 + a1 —i—a2T3.
With:
leesl® (llpsll® +1 1—h
T = —2(1—h —_—
W Ao A=)+ ==
7, _ 280 + )| ml? L 11+
2 ARAQ g )
2 2
5 P46
h
2 2 2 1—h 2 2 2 2 2 2 1—h)(1 _ﬁ 9 2
||§2|| B LQLH N 4P HMHQHMBH 287l +( )( ) (1_ el )
R Q n )‘Q AQ n AR

B.3 Finding optimal scaling parameter

Since the test accuracy is given by et = 1 — ¢ ((Va — mi)f%ma> as in Proposition 4.3, and that ¢(z)
is a non-increasing function, then finding the optimal o* that maximizes the test accuracy boils down to
maximizing the term inside ¢. Thus, by computing the derivative with respect to « of (v, — mi)féma

and finding the zero of the gradient gives us the final form of the best scaling parameter a*:

o _ ArTlpsl® — 2891 (1 + d) [ ml®
BYTo(1+ 0Q) |l — 2ARTs || psl?

And since the worst test accuracy is 50% (random classification), which is obtained for m, = 0, then

solving the previous equation gives the worst scaling & to use:

Arlps?
BY(1+6Q)Imlf?

a=—

C RMT analysis for arbitrary source classifier

Let © ~ A ((—1)*ug,I,) be an independent test sample. Let w be the source classifier (obtained through

some optimization algorithm). We recall that:

.« y
Wy = W + oW — EQ(’Y)XXTU), w = EQ(’Y)XZI
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C RMT analysis for arbitrary source classifier

C.1 Test Expectation

We have that:
Efw, ] = Efw ] + aE[w ' x] — —IE[ XX Q]
n

Let us compute each term of this previous sum.

First, using lemma A.6, we have that, since x is independent of X:

R O e

And we have that:

Ef 2] = (—1)°% s
And:
Bl XX Q] = & Zn: Efw " ziz; Q]
n n !
= E i —1
(1+5Q Z W' e Q)
— (1 +5Q ZE’w ZﬁQ_ZZI)]
(=% 1o A
T+ag 0 Qs
Thus:

1 ~ . a ~
Efw, 2] = (-1)* (H%MZQM +aw ' pg — T+ og wTEﬁQNﬁ)

) i ) o _
= (-1)° (H%“gQuﬂ +aw pg —aw' (Q7F — 7I”)Quﬁ>

1 TA ~TA
— (—1)@
10 (g Qua+ v Qs
Using the forumlas in lemma A.5:

(—1)*
lwsll? + 1+~

Elwg ] = gy Ukl ar(1+ Q)T ws)

C.2 Test variance

To compute the variance of w/ z, it suffices to compute the second moment: E[(w/ )?].

2
2
E[(w.2)’] = E[(w @ + o @)? + (b XX Qa)? — i XX Qu(w @ + aw | @)
n n

«
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C RMT analysis for arbitrary source classifier

First term: We start by computing
E[(w 'z + aw'x)?] = E[(w'2)] + 2 E[(w " x)?] + 20 E[w zw z]

We have that, as proved in Firdoussi & Seddik (2024):

1 1 - a 1—h
E T,..\2 — T N —9(1 — T -
(0" 0) = s (TP Q8 Qus 20— Wi Qus ) + 5
1 1 TA. 2, TA2 TA 1—h
= —92(1 — -
e (1+5Q ((quu,B) +1Q Hﬁ) (1 =M)ps Qus | +—
2 211 1—h
_ i sl ( 2HM5H + _2(1_h)>+
hllpsll® + 1+ 71+ 0Q)) \lpsll? +1 + (1 +6dq) h

And we have that:
E[(w'z)?] = w' Spw
And:
Ew'zw ' z] = Elw]' Ssw
= Hl%quzﬂﬁ)

Thus we have the first sum.

Second term: Now let us compute the expectation of the second term:

1 1
— E[(w'XX'Qz)’] = 5 E[w' XX Qe XX ' Quw)
n n

=w' E[%XXTQ&;%XXTQ]QI;

=w' E[(Q' -11,)Q%s(Q " —1,)Qlw

= @' E[(I, - 7Q)Ts(I, —1Q)|w

=w' E[S5 -7%5Q - 7Q%s +7°QEsQ) w
=w' (35 -72Q —1QEs ++°) w

=w' Sgw — 279w LpQuw + ' E[QEsQw

Third term: Now we will compute the last term: 22 E[w' XX " Qz(w 'z + aw ' z)].
We have that:

1

~E[w' XX ' Quz'w] = v E[(Q™" —11,)QTsw]

n

=w' E[(I, - 7Q)Zsw]
= S5 Elw] — yw' E[QYsw]

y _
-T2 - T
=w Qus —yw' E[QXzw
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C RMT analysis for arbitrary source classifier

R
- ElQXsQuix;
o ;l'w [QY5Qyix]

- Xz = -
— @ —L_Qug — i E[Q;Quiai]
+ (5Q

. Y = .
= ’le +55Q Qus — 7 ! QWTE[QE/BQ*W%]

+ 46
T X8 A YT %Q—ixixIQ—i
=w 1+5QQ#B - 1_|_5Qw EllQ-i— W Y5Q-iyix;
M _
~T Jé] g T Y ~T T
= - EQ_iXsQ_yixi] + ——Fw EQ_jx;x; Q_;X3Q_;y;x;
1+5QQM 5o [Q-iX5Q yw]+n(1+5Q)2’w Q-iziz; Q-i¥sQ—yixi]
by _ _
T B Y T i ~T
= — EQXY ———Tr(Xg E[QX
1+5QQM 55 Q ﬁQ]ﬂ6+n(1+5Q)2 r(Xs E[QEsQ))w Qup

And:
*E[ TXX"Qaz'w] =w' E[(Q " —1I,)Qs]w
= w' E[(I, —1Q)Sg]w

= W' YW — yw ' QYpw

Grouping all the terms: Thus, we now that we have the expression of all the term, we will group them

in the following way:

E[(w,) x)?] = T1 + aTy + T3

Terms without a:

1—h

T, = —2(1— h)> + = (42)

251 < sl + 1
h(llpsll? + 14+~ +6Q)) \llpsll* +1+~(1+q)

Terms in oz There are two : 2E[w @] and 2 E[w ' XX Qzw ' z]:
T, = 2E[wTwaw] E[ XX Qzw ]
1 + 5Q ( 1Q2sQuy — (1 =M1+ 5Q)117TQH5>
1+5 ( Qupps Qus + ' Q’pp — (1—h)(1+5Q)ﬁ;TQuB>

And we have that:

~TA TA _ (1+6Q)QHUB||2U~’TN5 ~TA2 . (1—|—5Q)2u~)—ruﬁ
W Quasky Qs = (T 411002 © YT sl 11 (14 00))2
Thus:
7, - 20+ Q)W " g < lpsl® +1 - h)>
h([|pgll? +1+~(1+0g)) \lmsll®2+1+~(1+dg)
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D Extension to Multi-Source Transfer Learning

Terms in o?: we have three terms: E[(w ' x)?], n%E[('LbTXXTQm)2] and 2 E[w' XX Quw ' z]:

1 2
Ts =E[(@' )’ + 5 E[(w' XX 'Qx)? - ZE[w' XX Qzw ' z]
n n

=W Y+ W Tpw — 29! BQuw + V2w E[QUsQ)w — 2w g + 2y ' QY pw

=’w' E[QYsQlw

Y Ty &
= f Iy QEBQ’LU
2
= % ((’JJTQMB)2 + wTQ2w>
_ (1 +6g)? ( (w " pp)? L 1=k (Hw”Q R 17| w7 2(w " pp)?
h (sl +1+7(1+60))> (sl +1+v(1+69))*  llpsll® + 14+ ~(1+dq)

2 1 5 2 =T 2 1—h 1—h =T 2 2
2 o Ao

D Extension to Multi-Source Transfer Learning

Given T source classifiers {w;}]_; and a single target task, the goal is to fine-tune a mixture of these
classifiers on the target task. Specifically, we want to find the optimal fine-tuned classifier wq that is

written as:

T
wq = E oW + a
t=1

where a; € R and a is an adapter trained on the target dataset as follows:

T
o1
a = arg min,, ﬁHXT(Z ayw; +v) — y|I* + /v
t=1

Then, a expresses as:
1/1 = d
a== (xxT + 71p> (Xy ~XXTY oatwt)
n\n —
Thus, our new fine-tuned classifier writes as:

T T
1
wq = E aGw; +a = ;QXZJ + v E o Quy
t=1 t=1

To compute the theoretical test accuracy of this classifier, we will take a test sample © ~ A4 ((—1)*ug, I,),

independent from the training data (x;)};, and we compute the statistics of the decision function wg x.

D.1 Test Expectation

We have that:

T
Elwhx] = Elw ' x] + v Z o Elw/ Q]
t=1
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D Extension to Multi-Source Transfer Learning

T
= Elw'z] + (-1)% ) cvw/ Qug

From the previous section, we have that:

. (1) a2
Elw"a] = 15 ks Qs = [ (14 00)

And from lemma A.5, we have that:

(1+dq){wt, pg)

w Qugs
T lmsZ+ 1+ (1+ bg)
Finally, we get that:
Efwgz] = 1) sl + (1 +6 i (wi, p
T sl + 1+ (T +5g) \ @) £ T p)

In a vectorized form, denote by o« = («q, . . ., ozT)T the vector of coefficients and by W = (wy, ...

RP*T then we have that:

o (sl +7(1 + 6g)o "W T pg)

Elwgx] = (-1) Tl + 1 +(1 + 00)

D.2 Test variance
Now we will compute the expectation of the second order moment of 'wg x:
T 2 T
E[(whz)Y] =E | (wz)? 4+ ~? <Z ozt'thQaz> + 2y Z oqyw, Qrw ' x
t=1 t=1

Let us compute each term of this sum and then aggregate the results at the end.

First term. We have that:

oo lesll? (lleslP+1 1—h
E[(w'z)%] = o " 2(1—h) +7h

Second term. Now let us compute the second term of the sum:

T
E Z ozt'thQ:c'me] Z oy Elw,” Qe " w]
t=1

o Elw/; QY w]

I
Mﬂi

“
Il
—

1
M=

aw; E[QTs— Zy@sz

“
I
—
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D Extension to Multi-Source Transfer Learning

T
Zat'wt EQXsQy;x;] (x; 1.i.d)

1 T
T ;atwt E[QX3Q_yixi]

And since we have that: -
Q-iriz; Qi

Q=Q- =~ 116

Then:

E iawTQmme = 1 zT:aerE Q 7(272332—33:% YsQ iy
£ L+ og &= Ot T Tl eg) ) O

T
- 1 T 1 T T
=17 5 ;Oét’wt E[inE/BQ—z’yi$i] - W ;atwt EQ_iz;x; Q,izﬁinyimi]

We have that:

Zatwt [Q-i25Q iyimi] = Zatwt [Q25Q]ps

arw] QEsQus

mw
MH

T
1 (1 +5
EZ 000 o pas) (s 1)

And we have that:

T T
1 T T 1 T T
W tzlatwt EQ-iziz; Q-iX5Q_yixi| = W ;atwt EQ-iyiz; Tr(zix; Q_iXzQ_;)]

1 AN
BT e ; aw, E[Q_yx; Tr(X5 E[QYXsQ])]

1 - 1 _
~ n(l+60)2 Z awy ElQ-iyixi]y Tr((£5Q)?)

== Zatwt Qus

_ 1= Z (14 6¢)(wy, pp)
= o \
=1 Q

Thus the second term is given by:

o 1+ 60) < 2,
E [; atw;Qmme] — (ht\QQ) Zat (W’ —(1- h)) (wy, pg)

t=1

_ (1+0q) (llmsl®+1
o o

-(1- h)) W',
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D Extension to Multi-Source Transfer Learning

Third term. We have that:

T 2
v E (Z atthQa:> =~’E
t=1

T T

Z aw, Qe Z aw; Qe
t=1 k

=1

E[atakw;waTka]

Il
\Ql\')
MH

\.@#
T
=

2 ) Elw QZsQuy]

I
W

o
Eod
Il
—_

2

B

=" ) w E[QTsQluwy
tk=1
7 SN
=7 > apw! QLQuy
tk=1
And we have that:
Q%4Q = Q (mspf +1,) Q
= QMBMEQ +Q
¢ +5Q)2M O 50)> . (mpms)®  2ppp)
2y PR A1+ 02 \ P 2 A0

Thus the last term is given by:

r 20 sy
Y E Zatw;Qm = Q)

t=1

T
Z g <wt7 l’l’ﬁ><wk7 IJ’6> + 1 <wt wk,’> + HIJ’ﬁH2<wt7 I’l’,8><wk7l‘l‘5> _ 2<wt7 “5><wk7 l“l’ﬁ>
ol 2 (14+~(1+46g))? 2 AQ
In a vectorized form, we have that:
d 24602
2 T _
vy E <Z oW, Qa:) = . X
t=1
(@ W pg)? 1 oW W o sl (@ W ipg)?  2(a W pp)?
25 (14+~v(1+dg))? 25 Ao

21 5 2
:77( —;; Q) o' Ma

where:

1—h 1 1—h 2
M:( )WTW+ TJF( ) (sl o) | W sl W
n Ao nAQ AQ

Finally gives us the expression of the second order moment of 'wg x as follows:

E((wgz)’] = T1 + Tz + Ty

52



E Extension to Linear Regression Transfer

where:
sl (sl +1 1—h

T, = —2(1—=h —_—
" g A0 1=m)+=

T

29(1 + dg) lpsl® +1

Ty = WZ% T — (I —=h) ) (wy, pg)

t=1

2 2
T, = v (1 + 5@) y
h
T
S oy (wi, pg) (W, pg) 1 (wr,wy) + s> (wes pup) (wis pp) — 2(we, pg) (Wi, ps)
Py )\é (1+7(1+5Q))2 >‘2Q AQ
Which also writes in a vectorized form:
sl (sl +1 1—h
T = —2(1—nh _
"7 g o A=m)+=
2v(1 + 6 241
hXg AQ
2 1 5 2
Tg,zi7 ( Z Q) o' Ma

E Extension to Linear Regression Transfer

We start by stating the lemmas which will be necessary to derive our results.

E.1 Preliminary results

We have that the resolvent matrix we’re working with in this section is given by:

1 -1
Q(y) = <n><><T + 71p>
A deterministic equivalent of this latter is:

- 1+0 —y—1+ —y—=1)2+4ny
Q) s V(n )2 +4n
14+~(1+49) 2y

Lemma E.1 (Deterministic equivalent of QAQ). For any deterministic positive semi-definite matriz
A € RP*P | we have that:

(43)

(1+9)? 1 Tr(A)
T 0 oA T i a2 B

Furthermore, we can use the above d.e to find that:

QAQ <

1+0)2
E[Q?] = ( 44
T ) | R )
Which then gives a simplified expression of the above deterministic equivalent:
(1+46)2 L1r(A)
AQ+ ———— [ A+ & I
WM T \ AT T ar
Proof. Similar to the proof of lemma A.7. O
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E Extension to Linear Regression Transfer

E.2 Test error

We recall that we want to study the transfer learning between two linear regression tasks. In fact, given a
pre-trained (source) linear regressor W, we want to adapt it to fit a target dataset comprised of n features

X = [x1,...,2,] € RP*™ and their corresponding labels Y = [y1, ..., ¥yn] € R™ where:
xi~ AN (0,L,), vy =W+ 2z, 2z~ N0, JQId)
This gave us a closed-form solution of the fine-tuned classifier which expresses as follows:
W, = %YXTQ + ayW,Q

To evaluate the efficiency of this fine-tuning process, we can compute the theoretical test error of this
regressor defined as follows:
Etest = E [Hwam - yHQ] (45)

for test samples (x,y) independent of the training set. This error decomposes as follows:
Eiest = E[[|[Woz|? + ly[I* — 22 W, y]

Therefore, we will compute the expectation of each term and then aggregate the results to get the theoretical
test risk of the fine-tuned regressor.
First, denote by:

A=(1+~(1+9)) (46)

First term. We have that:

Ely 'y
E[(Wx + 2)| (Wi + 2)]
Elz' W/ Wz] 4+ 2E[z" W, 2] + E[z 2]

E[ly?]

We have that:

Elz' W W,z] = Tr(E[zz' W, W,]) = Tr(E[zz ' |W, W,) = Tr(W/] W,)

And:
Elxz"W/ 2] = E[z] "W/ E[z] =0
and finally:
E[z'z] = ¢%.d
Thus:

Ely|*] = Te(W} W) +0*.d
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E Extension to Linear Regression Transfer

Second term. We will now compute: E[z"W,y]. We have that:

Elz' W,y = Tr(E[z W y))
= Tr(E[yz'W,])
= Tr(Elyz " |E[W,])

‘We have that:

And :

= ZE _ixiy; |+ ayQW,

1

-5 Z E[Q_Eilziy] ]| + acn QW]

|
Qi
=
_‘
+
Q
3
Qo
=
=

Thus:

Elz' W,y = % (Tr(WtTWt) + ay(1+6) Tr(WSTWt))

Third term. Now we will compute the last term of our sum: E[|W,z|?]. We have that:
E[|Waz|?] = E[z' W, W,z
= Tr(E[zx"|E[W . W,)])
= Tr(E[W, W,))
And we have that:
1 1
E[W,Wo] =E | (~QXY'" + a7/ QW,)(-YX'Q +0a7W.Q)

= SEQXYYXTQ+ 2T EQW] YXTQ] + () E[QW] W.Q]
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E Extension to Linear Regression Transfer

= A1+ Ay + A3
We have that:
1
Ar=—5 E[QXY'YX'Q] = Z [Qziy] y;z] Q]

1 n

=3 Y EQuiy vz, Q] + = ZE Qziy; y;z; Q]

i=1 i#j

1 1

= ~E[Quy, yiz! Q] + (1 - ) E[Quy, y;z, Q]

=T +1>

We compute each term of this decomposition then aggregate the results. We have that:

1 1

1
I = EE[QfBiy;ryifBzTQ] = mE[Q,imiy;yim;Q,i] = mE[Qﬂ' Ei[ziy; yiz, |Q-i]

And:

E a:z(a:ZTWtT + z;—)(Wtazi + zl)m;r]
a:i(a:-TWTWtaci + ZmTWTZi + szi)acZT]

Elziy; yiz]] = E[
[
[z W, Wiz ] + B[z 2, z2] ] (because E[z;] =0)
[
[

xix, W, Wiz | + 0.d. B[z, ]

E
E
E
Elz;x; W/ Wz ]+ 02.d.1,

And by concentration in random matrices, we have that the term: %acZTWtT W,x; concentrates to its
expectation rapidly, and: 1 E[z/ W,/ W,z;] = L Tr(W,/ W,). Thus:

Elziy yiz]] = (Tr(WtWtT) + 02.d) I,

Thus:

m (Tr(WtWtT ) + UQ.d) E[Q?]
_ (Te(W,W/) + 02.d) I

n(A\? —n) P

T =

And then we have that:
1
Ty =(1- ) EQaiy; y;z; Q]
= E[Qziy; y;jo] Q1+ O(n")

1

1 Q_ijzjz] Q_yj Q—i'wiiB,TQ—i'
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= W(Bl — By — B3 + By)

In fact:

= E[Q_iziy yjz] Q_ij]

Qi Eilziy | Ejly;=] 1Q4]
Q- W, W,Q_;j]
=E[QW, W, Q]

_ (1+9)° Tr(W,W,)
-5 (wiwe T )

And:

1 Tor T T
By = ——E[Q_i;@y, yix) Q_i;jxix; Qi
? n(1+96) [Q-ijziy; yjz; Q-ijriz; Q-ij]
—# ] .. T, .. T .
= i1 5 HQ-ywi Qui) TEly] yj] Quijai)
= (1) HlQ-umim Q] Tr (W, WiQ)
_ (W W,)
B nA
_ (W W)

nA

E[Q_ijziz] Q_ij]
E[Q?]
Thus:

(1+6)?

By = ——
2T (02 — )

Tr(W,W/)I,

And because the training data is i.i.d:

Bs =By, By= ﬁ(nil)

Hence:
= — 1 (B —2b)
. W;Wt Tr(WtWtT) l _ I
X nA(AZ2 —n) \\ P
Thus:
A =T +1T7
CWW, Tr(W,W/) (1 AT Tr(W;W, )I o2.d ;
N nA(A? =) \A P2 =) P (W )"
\VARY 2d Tr(W, W,/ 12
W W _od DWW ) (L 2)
A2 n(A? —n) n(A? —n) A2
W, W 2.d Tr (W, W, 1)?
:tt+0 Ip+r(tt)1—1p
A2 n(A%? —n) n(A? —n) A
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_W/W,, od (A= 1)2 Te(W,W))

I, + I,

A2 n(A2 —n) A2 n(A2 —n)
Thus:
T 2 12 T
Tr(Ay) = Tr(W,W, )  o°.dn N nA—1)° Tr(W,W, )
2 22— q 2 22— q
(M1 +n)—2n) T o2.d.n
= Tr(W; W
o2y WW e
Hence:
~ (A0 +n) —29) T, 02d
Tr(A;) = NOZ =) Tr(W:W, ) + N

Now let us compute the term As = 20‘77 E[QW/YXTQ]. We have that:
2
A = Y EQW]YXT Q]
n

20y &
= > E[QW,yiz/ Q]
i=1

E[QW, yiz; Q]

I
S
o
+(3
N
(7=

s
Il
—

. 2ary n 4 Q,Zmlx?Qﬂ T T '
~ n(l1+9) ;E KQ_’ n(1+6) W yix; Q-
207 T T 2ay - T T T
= D+ 90) ZE [inws Yix; sz} - m ZE [Q,lmlml Qi W, yiz, Q_;
=1 i=1
_ 2y WTvalo ] 207 o TO W T O
— (1 T (5) E[Q—zws Yi,x; Q—z} TL(]. T 6)2 E[Q_Zﬂjlmi Q_ZWS Yix; Q—z]
=T -1

We have that:

__2ay WTaarTO
Tl — (1 + 5) E[Q*’LWS yzmz sz]
_ _2ay wT .
- (1 + 5) E[Q—zws WtQ—z]
_ 2ay (1+46)? T Tr(W,] W)
“ i e (VW )
~ 2av(149) T Tr(W] W)
- B (Wrwer )
And:
_ 2oy o TO W aaTO
T = mE {Qﬂmzmi QW yix; Qﬂ}
2
= ﬁE[Qﬁmzm;Q%] Tr(Elz] Q-iW, i)
_ 2ay 2 AT
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20y (1+90)
B 2ay
BEOX(ED)) Tr(W, W, ) E[Q?]

(1+40)2
A2 —n

2ay T
= Y T (W,W
A1) H(WeW,)

I

2ay(1+9) T
= ———FTr(W;W, I
n)\()\z_n) r( t S) P

Then:

2ay(1 4+ 6)(A—n)

TI'(AQ) = T‘I(Tl — TQ) = )\()\2 — 77)

Tr(W;W/)
Finally, we need to compute the last term: A3z = (ay)? E[QW/ W;Q]. We have that:

As = (a7)’ E[QW,] W, Q]

2 T
= (a’y)z a 1_25) (WJWS + 7Tr(WSWS )Ip>

n(A* —n)
Thus:
ay(1+6))?
Tr(As) = | 7(; ) <1+ V”_n) Te(W W)
= (MA(; = :75>)2 Tr(W,W,)

Now let us write the test error Eleg in the following form:

BEiest =11 + oI + 042T3

Constant term 77. We have that:

2 A1+n)—2n o’.dn
Ty = Tr (W, W) + 0%.d — 3 Tr (W, W) + TNOT e (W, W) + X
2 Ad+n)—2n Ty, 2 U
=(l1--+——"—— | Tr((WW dll
< AT pe gy )W e (L
(A—1)2 T 02.d)\?
Linear term 75. We have that:
29(1 +0)(A —n) Ty 21 +9) T
Ty = Tr((WW,) - ———Tr(W;W
2 )\()\2 — 77) I'( t s ) A I'( t s )
2v(1 1-—
_ 209 =N W)
A2 —n
Quadratic term 73. We have that:
(v(1+9))? T
T3 = )\2 s TI'(WSWS )
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E.3 Optimal scaling parameter
The goal is to find a parameter a that minimizes the test error Eiest = 11 + aTh + o>T3. The objective
function has a unique extremum point « given by:

15
2T

of =

By replacing T» and T3 by their corresponding values, we get that:

- TI'(WtW;r)
- Tr(W,W])

*

« (48)

This result is counter-intuitive, as the optimal o* does not depend on the number of finetuning samples

n.

F LLMs experimental details

F.1 Hyperparameters

In this section, we summarize all the details about our experiments on Fine-tuning roberta-base model
on GLUE tasks. Let us define some notations first then give their corresponding values in each experiment:
lora_r denotes the rank of LoRA modules, lora_alpha denotes the LoRA scaling parameter, lr_adapter
means the learning rate used to train LoRA modules, batch_size and batch_alpha is the training batch
size for LoRA modules and the vectors a respectively, lr_alpha is the learning rate used to update o,
optim_alpha is the optimizer used to train the vectors «, val_split is the percentage of the training set

used to train c.

Common to all experiments. We optimize the LoRA modules using AdamW for all the benchmarks
and with a linear scheduler for the learning rate. We initialize the vectors a to the vector 1. The target
modules are: the final classifier layer classifier (full training) and the attention modules query and
value (Low Rank Adaptation).

F.2 Values of scaling parameters

We report in the following plots some metrics (mean, standard deviation, percentiles) describing the ob-

tained values of the vectors a for each module after the training phase.
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Parameter | Value

optimizer AdamW
LoRA Arguments

lora.r 8

lora_alpha | &

1lr_adapter 1074

Trainer Arguments

n_epochs 10

batch_size 64

optim_alpha | AdamW
batch_alpha | 64
1r_alpha 1072

T 1

val_split 1
seeds 1, 5,123

Table 3: Implementation Details for the fine-tuning experiment on MNLI.

Parameter | Value

optimizer AdamW
LoRA Arguments

lora.r 8

lora_alpha | 8
1r_adapter | 10~ for LoRA and 2.10~* for a-LoRA

Trainer Arguments

n_epochs 10

batch_size 64

optim_alpha | Adam
batch_alpha | 64

1lr_alpha 5.1073

T 20
val_split 0.2
seeds 1, 3, 123

Table 4: Implementation Details for the fine-tuning experiment on QNLI.
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Parameter | Value

optimizer AdamW
LoRA Arguments

lora.r 8

lora_alpha | 8

1r_adapter | 107 for LoRA and 2.10~* for a-LoRA
Trainer Arguments

n_epochs 40

batch_size | 64

optim_alpha | Adam

batch_alpha | 64

1r_alpha 5.1073

T 20

val_split 0.2

seeds 3,9, 123

Table 5: Implementation Details for the fine-tuning experiment on MRPC.

Parameter | Value
optimizer AdamW
LoRA Arguments
lora.r 8
lora_alpha | &
lr_adapter 1074
Trainer Arguments
n_epochs 40
batch size | 64
optim_alpha | AdamW
batch_alpha | 64
1lr_alpha 5.1073
T 20
val _split 0.8 (and 0.2 for seed 123)
seeds 3,9, 123

Table 6: Implementation Details for the fine-tuning experiment on RTE.
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Parameter | Value
optimizer AdamW
LoRA Arguments
lora.r 8
lora_alpha | 8
1r_adapter | 107 for LoRA and 2.10~* for a-LoRA
Trainer Arguments
n_epochs 10
batch_size 128
optim_alpha | AdamW
batch_alpha | 128
1r_alpha 5.1073
T 10 (and 20 for seed 5)
val_split 0.5 (and 0.9 for seed 5)
seeds 1,3,5

Table 7:

Implementation Details for the fine-tuning experiment on SST2.

Parameter | Value
optimizer AdamW

LoRA Arguments
lorar 8
lora_alpha | &
1r_adapter | 5.107%

Trainer Arguments
n_epochs )
batch_size | 256
optim_alpha | Adam, AdamW (seed 123)
batch_alpha | 64
1lr_alpha 5.1073
T 1 (seed 3), 10 (seed 5) and 20 (seed 123)
val_split 0.8
seeds 3,9, 123

Table 8: Implementation Details for the fine-tuning experiment on QQP.
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Alpha statistics across query/value layers

25-75 percentile
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Figure 10: Statistics of the vectors a for the QNLI benchmark
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