MATHÉMATIQUES VISION APPRENTISSAGE
VISION
APPRENTISSAGE

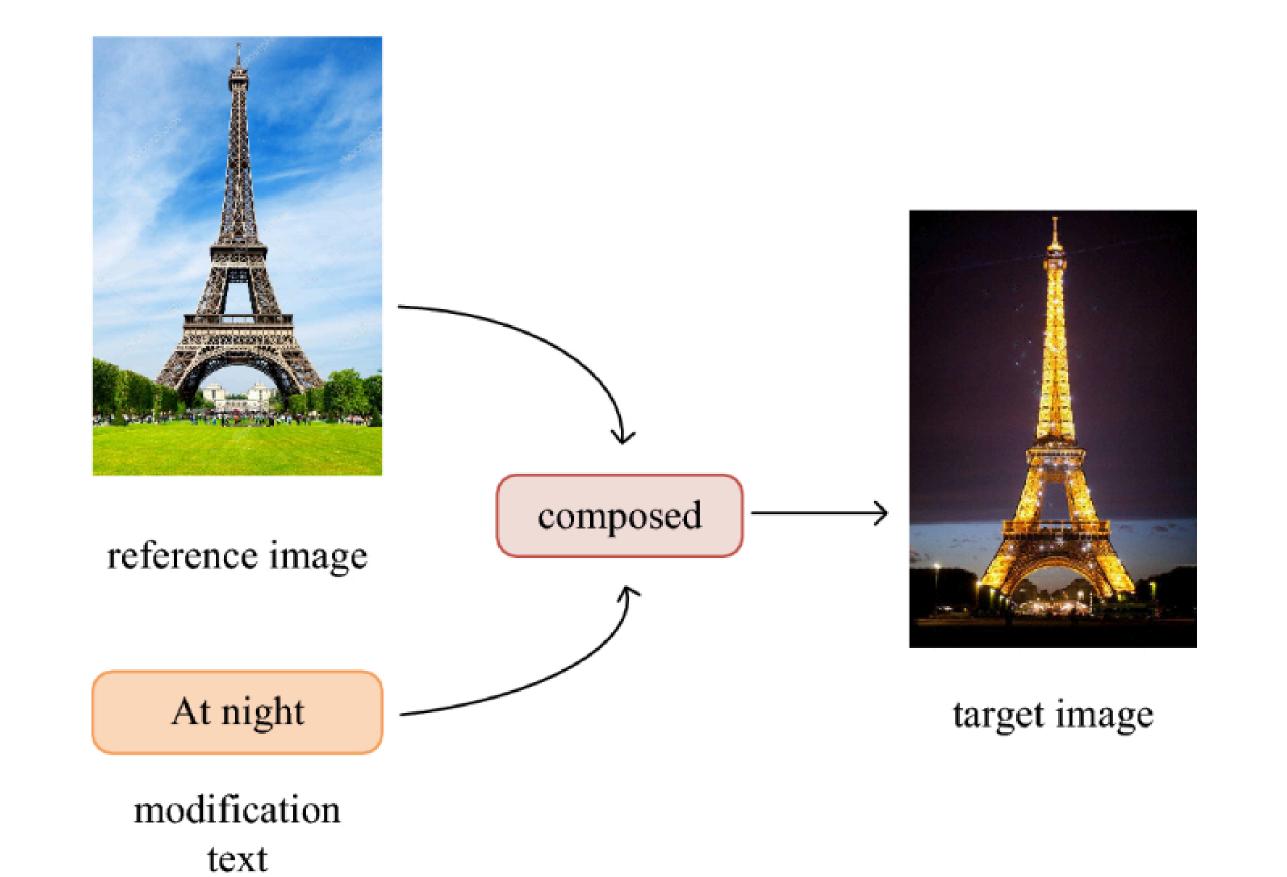
école
normale ———
supérieure ———
paris—saclay——
pulls sucidy

TOPIC A - OBJECT RECOGNITION AND COMPTER VISION

Aymane El Firdoussi

INTRODUCTION

Composed Image Retrieval (CoIR)



Goal of the project

- Reproduce a result of the CoVR (or CoVR-2) paper about the performance of BLIP (or BLIP-2) on the CIRR dataset.
- Try a small extension of the original paper.

CoVR: Learning Composed Video Retrieval from Web Video Captions

Lucas Ventura^{1,2}, Antoine Yang², Cordelia Schmid², Gül Varol¹

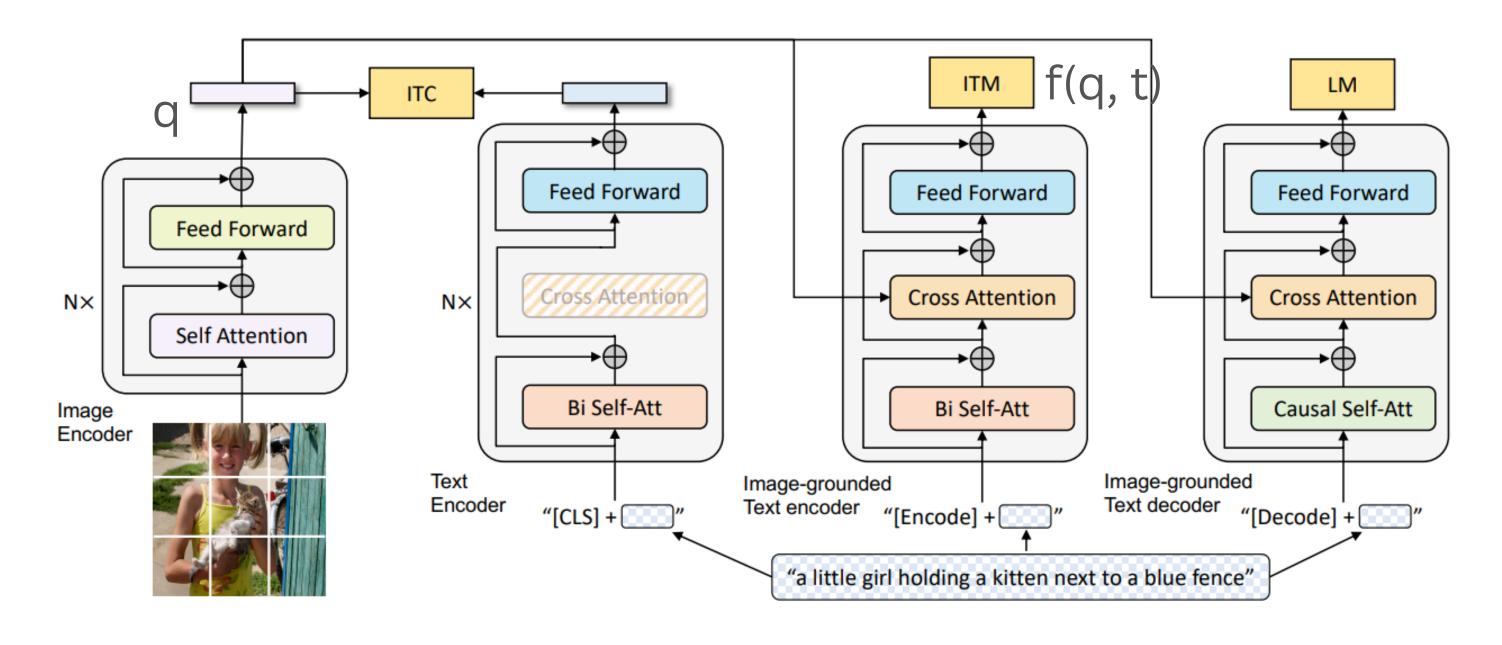
¹LIGM, École des Ponts, Univ Gustave Eiffel, CNRS, France ² Inria, ENS, CNRS, PSL Research University, France lucas.ventura@enpc.fr

PLAN

2- On the impact of the embeddings 3- Conclusion

RESULTS REPRODUCTION

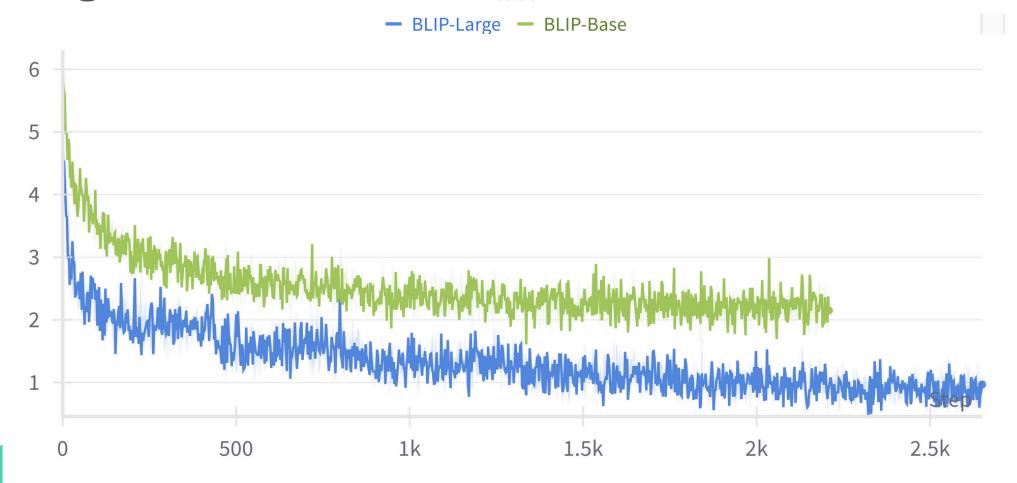
BLIP model in a nutshell



• We want to maximize the cosine-similarity between f and the target image embedding (minimizing the HNCE loss).

Training

- Trained BLIP-Base (Capfilt ckpt) and BLIP-Large (finetuned on COCO) models on the CIRR dataset using 4 GPUs (NVIDIA P4) with a batch-size of 16 (paper 1024) and with 16-bit Mixed precision (to accelerate training).
- We train / evaluate our models on the Compose Image Retrieval on Real-life images (CIRR) dataset. _{loss}



Results

• We get lower results compared to the ones in the paper due to the drastic decrease in the batch size (from 1024 to 16).

Model	R@1	R@5	R@10	R@50
BLIP-Large	49.16	79.76	88.65	97.49
BLIP-Large*	27.03	67.42	80.08	95.07
BLIP-Base*	21.84	59.02	73.60	93.23

ON THE IMPACT OF THE EMBEDDINGS

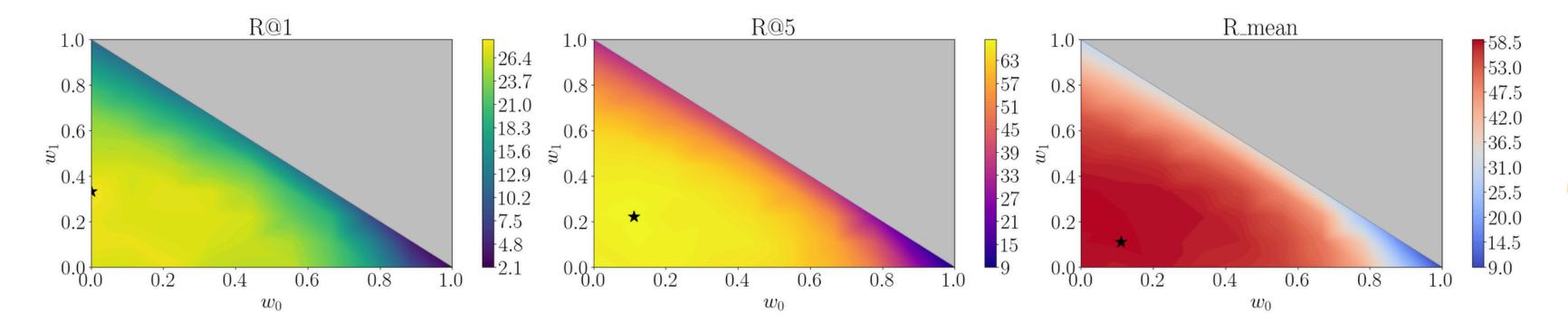
Fixing by Mixing

- We want to investigate on the efficiency of the multimodalembedding f(q,t).
- We introduce the "Mixed" embedding:

$$m(q,t) = w_0 q + w_1 t + w_2 f(q,t), \quad \sum_{i=0}^{2} w_i = 1$$
 (1)

Analyzing the results

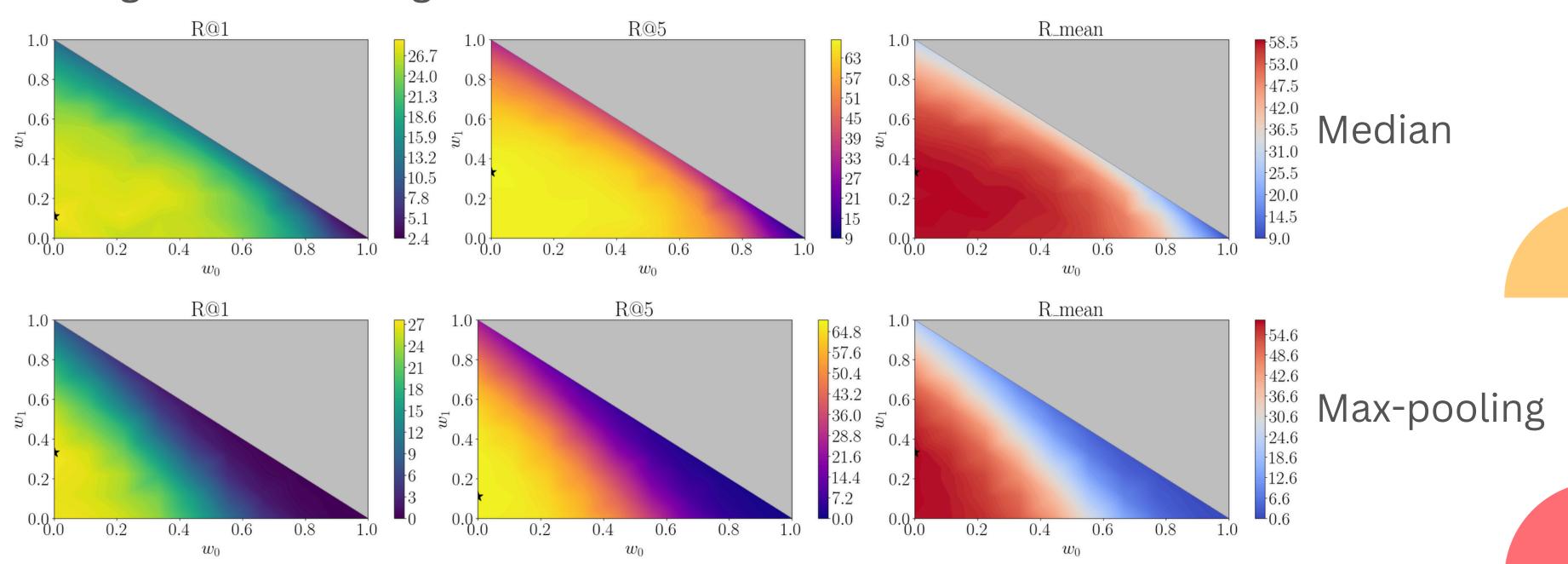
• Counter-intuitive result: that we don't have the same w_0 and w_1 that maximizes all recalls.



Model	R@1	R@5	Avg
baseline	27.03	67.42	58.18
Mixed	28.32	68.14	58.69

About the aggregation rule

• I also tried Median and Max-pooling instead of simple averaging, and got the following results:



CONCLUSION

Conclusion & Potential future directions

- Overall, the multimodal embedding is sufficient (not much difference between m and f).
- Also tried to learn the weights (w_0, w_1 and w_2), but it took too much credits and time, and didn't give satisfying results (needed tuning).
- Explore the mixed embedding on other datasets: FashionIQ, WebVid-CoVR dataset, etc.
- Examine other approach to compare vectors instead of Cosine similarity?

ACKNOWLEDGMENT

I would like to thank my project supervisors: Mr. Lucas Ventura and Dr. Gül Varol for their constant help and their fast e-mail answering (even during holidays)

Thank you all for your attention!