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Composed Image Retrieval (ColR)
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Goal of the project

e Reproduce a result of the CoVR (or CoVR-2) paper about the
performance of BLIP (or BLIP-2) on the CIRR dataset.
e Try a small extension of the original paper.

CoVR: Learning Composed Video Retrieval from Web Video Captions

Lucas Ventura'?, Antoine Yang?, Cordelia Schmid?, Giil Varol'

ILIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, France
2 Inria, ENS, CNRS, PSL Research University, France
lucas.ventura@enpc.fr
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1- Reproducting CoVR paper results
2- On the impact of the embeddings
3- Conclusion
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BLIP model in a nutshell
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e We want to maximize the cosine-similarity between f and
the target image embedding (minimizing the HNCE loss).
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Training

e Trained BLIP-Base (Capfilt ckpt) and BLIP-Large (finetuned on COCO)
models on the CIRR dataset using 4 GPUs (NVIDIA P4) with a batch-
size of 16 (paper 1024) and with 16-bit Mixed precision (to accelerate

training).
e We train / evaluate our models on the Compose Image Retrieval on

Real-life images (CIRR) dataset. ...

= BLIP-Large = BLIP-Base




Results

e We get lower results compared to the ones in the paper due to the
drastic decrease in the batch size (from 1024 to 16).

Model R@] R@5 R@10 R@50

BLIP-Large 49.16 79.76 88.65 97.49
BLIP-Largex 27.03

BLIP-Basex 21.84
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Fixing by Mixing

e We want to investigate on the efficiency of the multimodal-
embedding f(q,t).
e We introduce the “Mixed” embedding:

2
m(Q: t) = woq + w1t + wa(Q: t), Zw‘i =1 (1)
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Analyzing the results

e Counter-intuitive result: that we don’t have the samew O and w_1
that maximizes all recalls.
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About the aggregation rule

e | also tried Median and Max-pooling instead of simple averaging, and
got the following results:
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Conclusion & Potential future directions

e Overall, the multimodal embedding is sufficient (not much difference
between m and f).

e Also tried to learn the weights (w_0O, w_1 and w_2), but it took too
much credits and time, and didn’t give satisfying results (needed
tuning).

e Explore the mixed embedding on other datasets: FashionlQ, WebVid- .

CoVR dataset, etc. ‘

e Examine other approach to compare vectors instead of Cosine
similarity ?
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