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Abstract

Composed Image Retrieval (ColIR) [13] has recently gained
significant attention in computer vision research. It involves
retrieving images based on a complex multi-type query com-
prised of a reference image Q and a text-based description
or modification T of this latter. This task is inherently chal-
lenging as it requires effectively integrating both visual and
textual information into a unified representation. In this pa-
per, we investigate the efficiency of the multimodal encod-
ing in BLIP, a vision-language model used for ColR. We
show that BLIP’s current encoding does not fully capture
all the necessary information from both modalities. To ad-
dress this, we propose a novel approach that enhances mul-
timodal representations by incorporating additional uni-
modal information. Our findings provide valuable insights
into the limitations of existing methods and suggest direc-
tions for future improvements in ColR models. Code for
experiments, intially forked from CoVR repository', can
be found here: hitps://github.com/elfirdoussilabl/RecVis-
project .

1. Introduction

Image retrieval [5, 9] has long been a fundamental prob-
lem in computer vision due to its wide-ranging applica-
tions in query-based systems. A key challenge in image
retrieval lies in formulating queries that accurately capture
the user’s intent. Traditional approaches, such as content-
based retrieval [10], which relies purely on visual similarity,
or text-based retrieval [4], which searches based on textual
descriptions, often fall short in fully expressing complex
user queries. To address this limitation, Composed Image
Retrieval (ColR) has emerged as a powerful paradigm that
leverages multimodal queries, combining both visual and
textual prompts, to specify the target image more precisely.
In this setting, the reference image provides a broad contex-

Uhttps://github.com/lucas-ventura/CoVR

Modification text for #1: “Be a same breed dog with his puppy running”
Modification text for #2: “Two dogs of the same breed on the floor”

Figure 1. A sample from the CIRR dataset: The input consists of a
reference image and a modification text. The goal is to retrieve the
correct target image that best matches the specified transformation.

tual representation, while the accompanying text refines the
query by highlighting specific modifications or attributes of
interest. A fundamental challenge in ColR is determining
which aspects of the reference image should be preserved
and which should be disregarded, typically distinguishing
the primary object of interest from background elements or
irrelevant details. This inherent ambiguity makes ColR a
particularly compelling research problem, bridging the gap
between vision and language understanding.

2. Training BLIP for ColR

Numerous models have been employed for Composed Im-
age Retrieval (ColR), including BLIP [2] and its enhanced
version BLIP-2 [3], OpenAI’s CLIP [8], and CIRPLANT
[6], among others. In parallel, several benchmark datasets
have been developed to facilitate research in this area, such
as CIRR [6], FashionlQ [14], and the recently introduced
WebVid-CoVR datasets [11, 12].

In this work, we primarily focus on BLIP-based models and
assess their performance on the CIRR dataset.

2.1. Model description

BLIP-CoIR. Our ColR model architecture builds on
BLIP (described in Figure 2), a pre-trained image-text
model. Since BLIP is not intentionally trained for com-
posed visual retrieval, we therefore adapt it to our task as
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Figure 2. BLIP Architecture as of [2]: it consists of a unified vision-language model which can operate in one of the three functionalities:
(1) Unimodal encoder (image or text) is trained with an image-text contrastive (ITC) loss to align the vision and language representations.
(2) Image-grounded text encoder uses additional cross-attention layers to model vision-language interactions, and is trained with a image-
text matching (ITM). (3) Image-grounded text decoder replaces the bi-directional self-attention layers with causal self-attention layers,
and shares the same cross-attention layers and feed forward networks as the encoder.

follows:

We use the BLIP image encoder, which is a Vision Trans-
former [1], to encode the query image Q into visual fea-
tures ¢ of dimension N x d, where N is the number of fea-
ture vectors produced by this block. These latter, together
with the encoded modification text ¢ are then forwarded to
the BLIP image-grounded text encoder which outputs a
multi-modal embedding f(q,t) € R?. Finally, the retrieved
image Z is the one that maximizes the cosine similarity be-
tween the multimodal embedding of the query f(g,t) and
the embedding of a target image z € R?, i.e.:

arg max(z, f(q,1)) (1)

where (, ) represents the normalized dot-product in R?, and
is defined as: for all a,b € R%:

a’h

-8 = e

2.2. Training

CIRR dataset. The Compose Image Retrieval on Real-
life images (CIRR) includes over 36,000 annotated query
(image and text) and target triplets (Q, T, Z), where 80%
of this data is used for training, 10% for validation and 10%
for test. The modification text of each triplet has been col-
lected using Amazon Mechanical Turk (AMT). An example
of a sample from CIRR is shown in Figure 1. Table | sum-
marizes the number of triplets and images forming each set.

Set Nb. of triplets ~ Nb. of images
Train 28,225 16,939
Validation 4,184 2,297

Test 4,184 2,316

Table 1. Statistics of the CIRR dataset [6], showing the number of
triplets and unique images in the training, validation, and test sets.

Loss function. We optimize our BLIP-based models by
minimizing the HN-NCE loss [7], which increases the
weight of most similar samples and uses as negatives all
target images z; in the batch 5. More precisely, given a
training batch B of triplets (g;, ¢;, z;), we define the quan-
tity S; ; = (fi, #;) being the cosine-similarity between the
multimodal embedding f; and the target image z;, and we
aim to minimize the following loss function:

eSi,i/T
ﬁ(B) = — ZlOg (assi,i/‘r + Zi#j esi,j/Twi,j

i€eB
— Zlog Sii/T €Si’i/7— ST
icB ST+ D iy € T

where o = 1, the temperature 7 = 0.07 and the weights
w,j are set as in [7] with 8 = 0.5.
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Figure 3. Heatmaps showing BLIP-Large recall performance on CIRR after applying the Mixed embedding (Equation (2)). We observe
that The optimal recall is achieved at non-zero values of (wo, w1 ), which demonstrates the sub-optimality of BLIP’s multimodal encoding
block. The star (*) in each plot marks the optimal weight combination (wo, w1).

Implementation details. We train two variants of our

BLIP-ColIR model:

* Base model: which has an image encoder (Vision Trans-
former) of 12 transformer layers, each with a hidden size
of 768 and 12 attention heads. We use the Capfilt check-
point as initial state.

* Large model: that features a more complex architecture,
with 24 transformer layers, a larger hidden size of 1024,
and 16 attention heads. We initially use a checkpoint of
this model finetuned on COCO.

The Large model has approximately more than the dou-

ble of parameters of the base model, making it signifi-

cantly larger and more capable of capturing complex rela-
tionships between images and text, but it comes with the
cost of higher compute resources for both training and in-
ference. For more computational efficiency, we freeze the

BLIP (both Large and Base) image encoder (ViT) during

training. Experiments are conducted on 4 NVIDIA P4 8-

GB GPUs, and all the details concerning the deployed hy-

perparameters are summarized in Table 5 in the Appendix.

Figure 5 shows the training loss evolution of both models.

2.3. Results

Evaluation metrics. We use the standard evaluation
metrics [6] which consists on reporting the recall at ranks 1,
5, 10 and 50. The recall at rank k (denoted R@Xk) quantifies
the number of times (percentage) the correct image is
present among the top k predictions of the model.

Model R@] R@5 R@10 R@50
BLIP-L [11] 49.16 79.76 88.65 97.49
BLIP-Lx (ours) 27.03 6742 80.08 9507
BLIP-Bx (ours) 21.84 59.02 73.60 93.23

Table 2. Retrieval performance (R@K) comparison between dif-
ferent BLIP models. Our results (marked with (*)) show a perfor-
mance gap compared to the baseline from the CoVR paper [11],
mainly due to differences in batch size during training.

Analysis of the results. We remark that we get lower per-
formance results of our trained BLIP-ColR models com-
pared to the baseline listed in the reference paper [11],
which is mainly due to the decrease in the batch-size, as
we only use 16 samples in each iteration, compared to
2048 in [11], to update the weights of the models during
training. Also, as expected, BLIP-Large (initially finetuned
on COCO) outperforms BLIP-Base on CIRR, showing its
higher capacity to capture more interesting multimodal fea-
tures in the data. Therefore, we use the Large BLIP model
for all the upcoming experiments.

3. On the impact of the unimodal embeddings

As stated in equation (1), the predictions (retrievals) made
by our BLIP models relie solely on the multimodal embed-
ding f(q,t), as it is directly compared to the target images
embeddings. However, we are not guaranteed that this mul-
timodal encoding might not miss some important informa-
tion present in each mode ¢ and ¢. So how can that be veri-
fied in practice ?

3.1. Fixing by Mixing

We want to assess whether the model’s multimodal encod-
ing f(q,t) captures almost all the necessary information
present in the user’s query (image and modification text).
This is equivalent to showing that this embedding is opti-
mal in terms of the performance recalls. And to validate this
assumption, we propose to evaluate the model on a convex
mixture of the three modal embeddings: ¢, ¢ and f(q,t),
and we define a new ”mixed”” embedding as follows:

m(‘]a t) = Wo4q + wlt + w?f(Qa t)a

The idea behind this new multimodal embedding m(q,t)
is to include (linearly) some additional information from ¢
and ¢, and see whether there exists some couple (wq, w;) #
(0,0), such that the performance of BLIP-ColR is better
using this new embedding. We call the resulting model that
uses m(q, t) instead of f(g,t) the Mixed model.
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Figure 4. Comparison of aggregation strategies for Mixed embedding: (Top) Median aggregation, (Bottom) Max-pooling. The median

approach yields superior recall performance across all ranks.

Model R@1 R@5 Avg
baseline 27.03 67.42 58.18
Mixed 28.32 68.14 58.69

Table 3. Effect of incorporating Mixed embedding on BLIP re-
trieval performance. The slight improvements in recalls confirm
that additional unimodal information is needed.

Table 3 and Figure 3 summarize the results gotten with
this new strategy. We clearly observe from that BLIP’s orig-
inal multimodal embedding f(g,t) is sub-optimal, as the
optimal recall value is not achieved for (wp, w1) = (0,0),
meaning that indeed BLIP’s image-grounded text encoder
does not capture the entire necessary information provided
by the query, but is still close to optimality.

Additionally, we observe that the optimal weights
(w;)2_, vary across different recall levels, which is an in-
teresting and counter-intuitive result as one would initially
expect them to be the same.

3.2. The impact of the aggregation rule:

As we have stated earlier in section 2.1, the Vision Trans-
former forming BLIP’s image encoder encodes the query
image into IV visual features of dimension d. Additionally,
the text encoder (Bert model) also gives a sequence of d-
dimensional vectors (encoding of each token in the text).
Thus, to compute the mixed embedding m(q,t) (2), we
need to aggregate the features of each unimodal encoding
(¢ and t) into one d-dimensional vector. Therefore, the per-
formance of our model using m(q,t) will depend on the
type of aggregation rule we’re deploying.

Model Aggregation R@1 R@5 Avg

baseline - 27.03 6742 58.18
Mean 28.32 68.14 58.69

Mixed Median 28.53 68.26 58.81
Max-pooling 27.34 68.07 58.44

Table 4. Comparison of the performance of Mixed BLIP model
using different aggregation rules. Optimal performance accross
all reported recalls were achieved by aggregating the vectors of ¢
and t using the Median.

We then evaluate our approach using three different ag-
gregation rules: Mean (Figure 3), Median (Figure 4 (top))
and Max-pooling (Figure 4 (bottom)). Table 4 summarizes
our findings.

We observe that the Median aggregation rule consis-
tently achieves the best performance across all recall ranks,
while Max-pooling proves to be the least effective, which
can be explained by the fact that the Median is robust to
outliers compared to the other rules.

Furthermore, and interestingly, the optimal recalls across
the three methods are obtained for wy = 0 (the weight as-
signed to ¢) in most cases. This essentially means that the
multimodal embedding f(g,t) already captures all the im-
portant information present in the query image, but fails to
fully encode the details conveyed by the modification text!

4. Conclusion & Future work

In this work, we investigated the efficiency of BLIP’s multi-
modal encoding for Composed Image Retrieval (ColR) and



explored its limitations. Our findings reveal that BLIP’s
current multimodal representation does not fully capture all
the necessary information from the input modalities, par-
ticularly from the textual modification. Through our pro-
posed mixed embedding approach, we demonstrated that
incorporating additional unimodal information improves re-
trieval performance, which highlights the sub-optimality of
BLIP’s multimodal encoding block. However, as we only
conducted our experiments on a single random seed, this
result is still inconsistent, and need further statistical guar-
antees (running on multiple seeds and reporting the standard
deviation of the recalls).

Future directions could involve exploring more sophisti-
cated mixing strategies beyond the linear convex approach,
developing advanced techniques for encoding multi-type
queries, as well as evaluating the proposed methods across
diverse datasets beyond CIRR.
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Training loss evolution:

loss
= BLIP-Large BLIP-Base

Figure 5. Training loss curve of BLIP-Base and BLIP-Large.

Training Hyperparameters

Parameter | Value
BLIP-Base
optimizer AdamW
batch-size 16
learning rate 9.5x 1077 <Ir<107°
learning rate scheduler | StepLR
epochs 5
weight decay 0.05
precision bfl16
seed 1234
BLIP-Large
optimizer AdamW
batch-size 16
learning rate 7x1075 <Ir<107*
learning rate scheduler | StepLR
epochs 6
weight decay 0.05
precision bf16
seed 1234

Table 5. Training hyperparameters of experiments reported in Ta-
ble 2.
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